

Artificial Intelligence

Case Based Reasoning

by Abdul Sahli Fakharudin Faculty Computer Systems & Software Engineering sahli@ump.edu.my

Communitising Technology

Chapter Description

- Expected Outcomes
 - Student able to review the case based reasoning concept
 - Student able to analyse and apply solution to a given cased based reasoning problem
- References

—

Content #1

- Case based reasoning cycle
- Retrieval
- Reuse
- Revise
- Retain

What You'll Learn

- Case-Based Reasoning (CBR)
 - Overview of CBR
 - CBR Cycle & System
 - Similarity in CBR
 - Case-based vs. Rule Base Expert System:
 Knowledge Representation
 - Type of Applications

CBR Cycle

Retrieval

• Similarity measure are used in the CBR retrieval process

What is Similarity measure?

- Similarity measure is used in problem solving and reasoning to match a previous experience/case (case-base) with the new unseen problem to find solution.
- Purpose of similarity:
 - Select cases that can be adapted easily to the current problem
 - Select cases that have (nearly) the same solution than the current problem

What is Similarity measure?

 Basic assumption: similar problems have similar solutions

Similarity

- There are two type of similarity:-
 - Local Similarity
 - Used to compute the similarity between query (new problem) and case attributes values – feature level
 - Global Similarity
 - Global similarity is a build up from number of local similarity function. It is a weight sum of the local similarity – case/object level

Similarity

The similarity measurement for local similarity is calculate between each attributes values, while Global Similarities is calculated between each cases.

Relationship between Local (SL) & Global Similarities

Communitising Technology

Local Similarity – Discrete

• The formula is:-

$$sim(a,b) = \begin{cases} 1 & if \ a = b \\ 0 & if \ a \neq b \end{cases}$$

Where,

- *a* is new feature, and
- *b* is previous features.

Local Similarity – Continuous

• The formula is:-

$$sim(a,b) = 1 - \frac{|a-b|}{range}$$

Where,

a	is new feature,
Ь	is previous features, and
range	is the value of difference between the upper and lower boundary of the set.

$$sim(A,B) = \frac{1}{\sum w_i} \cdot \sum_{i=1}^r w_i \cdot sim_i(a,b)$$

D

Where,

- A is new case,
- B is previous cases,
- *a* is new feature from local similarity,
- b is previous features from local similarity,
- *p* is the number of attributes,
- *i* is the iteration

$$w_i$$
 is weight of attributes $i \sum_{i=1}^p w_i = 1$, and

sim, is local similarity calculate for attribute i. Technology

Reuse

- Different option available:-
 - No modification of the solution: just copy
 - Manual/interactive solution adaptation by the user
 - Automatic solution adaptation
 - Transformational Analogy: transformation of the solution
 - Derivational Analogy: replay of the problem solving trace
 - Compositional adaptation: combine several cases to a single solution

Revise

- Revise phase:
 - No revise phase
 - Verification of the solution by computer simulation
 - Verification / evaluation of the solution in the real world
- Criteria for revision
 - Correctness of the solution
 - Quality of the solution
 - Other, e.g., user preferences

Revise the Solution of Case 1

Communitising Technology

Retain

• If the diagnosis is correct: Store it to the case-base

	Problem (Symptoms):
	 Problem: Break light doesn't work
С	Car: Audi 80
A S	• Year: 1989
S	 Battery voltage: 12.6 V
E	 State of break lights: OK
	 light switch clicking: OK
3	Solution:
	 Diagnosis: break light fuse defect
	 Repair: replace break light fuse

Conclusion of The Chapter

- Conclusion #1
 - CBR cycle consist of four phase :- retrieval, reuse, revise and retain
- Conclusion #2
 - Retrieval used local and global similarity to find similar problem
- Conclusion #3
 - Reuse used the solution from the similar problem case
- Conclusion #4
 - Revise process modify the solution to suit the solution
- Conclusion #5
 - Retain phase stored the new case and solution to the knowledge storage