

DISCRETE MATHEMATICS AND APPLICATIONS

Logic 1

Intan Sabariah Sabri (intansabariah@ump.edu.my) Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my)

Faculty of Industrial Sciences & Technology

Chapter Description

Chapter Outline

3.1 Propositional Logic3.2 Logical Connectives3.3 Propositional Equivalences

Aims

- Identify whether a statement is a proposition or not.
- Solve problems involving logical connectives, determine truth value and construct truth table.
- Verify that a proposition is a tautology, contradiction, contingency or logically equivalents.

References

- Rosen K.H., Discrete Mathematics & Its Applications, (Seventh Edition), McGraw-Hill, 2011
- Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- Chandrasekaren, N. & Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Applications of Logic in Computer Science

- Design of computing machines.
- Programming languages.
- Design of computer circuits.
- The construction of computer programs.

Propositions

- Proposition a declarative sentence that is either true or false, but not both.
- In other words, a statement is an idea of proposition.

Propositions: Example

Which of the following are propositions?

- 1. I love Mathematics Discrete and Applications subject. *This is a proposition*
- 2. We have to drink 8 glasses of plain water every day. *This is a proposition*
- 3. How are you today?

This is not a proposition (Question)

4. Please sit down.

This is not a proposition (Command)

5. 9+9=19

This is a proposition

Compound proposition

- Many mathematical statements are constructed by combining the propositions.
- Logical connectives are used to combine proposition to form new propositions by using logical operators (*not, and* and *or*).
- This new propositions are called compound propositions or also known as nonatomic propositions.
- Note that a single proposition is called as an atomic proposition.

Propositional Variables

- In logic, variables are used to represent propositions.
- The letters *p,q,r,s,...* are known as propositional variables that are used to denote the variables.

Example:

p: Making just a few changes in your lifestyle can help you live longer.
 c: Use liber is about sating smart

q: Healthy eating is about eating smart.

Truth Value & Truth Table

- Truth value the truth or falsity of a proposition.
- Truth table shows the relationships between the truth values of propositions.

Logical Connectives (Not, And & Or)

Example

Let

p: Today is a Thursday.

q: You will get a summon if you drive over 110 km/h.

Not p : Today is not a Thursday. q and p: You will get a summon if you drive over 110 km/h and today is a Thursday. p or q : Today is a Thursday or you will get a summon if you drive over 110 km/h.

Types of Logical Connectives

- Negation
- Conjunction
- Disjunction
- Implication/ Conditional
- Biconditional

Negation

- We read as "not p" or "opposite of p".
- Denoted by $\sim p$ or $\neg p$.

Note that the number of possible rows in a truth table is given by 2^n where *n* is the number of propositional variables.

Truth Table

p	$\sim p$
Т	F
F	Т

Example:

State the negation of the following statements. (a) p: 9 + 1 < 11 (b) q: I love to eat an apple.

> (a) $\sim p: 9+1$ is not less than 11. That is $\sim p: 9+1 \ge 11$. (b) $\sim q: I$ do not love to eat an apple.

Determine the conjunction of the propositions p and q.

(a) p : Today is a sunny day.

(b) q : I bring an umbrella to school.

 $p \wedge q$: Today is a sunny day and I bring an umbrella to school.

Disjunction

- We read as "p or q".
- Denoted by $p \lor q$

Note that the proposition is FALSE only when both p and q are false.

Truth Table

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Example:

Find the disjunction of the propositions p and q.

(a) p: Today is a sunny day.
(b) q: I bring an umbrella to school.

 $p \lor q$: Today is a sunny day or I bring an umbrella to school.

Implication/Conditional (i)

- p : Today is a raining day.
- q: I will bring an umbrella to school.

 $p \rightarrow q$: If today is a raining day then I will bring an umbrella to school.

Note: p is called hypothesis and q is called as a conclusion.

Implication/Conditional (ii)

On the other hand, $p \rightarrow q$ can also be read as:

```
    1." if p, q "
    2." p is sufficient for q "
    3." q if p "
    4." q when p "
    5." a necessary condition for p is q "
    6." q unless ~ p"
    7." p implies q "
    8."p only if q "
```

```
9. "a sufficient condition for q is p"
10." q whenever p"
11. "q is necessary for p"
12." q follows from p"
```


Implication: Converse, Contrapositive & Inverse

Related implications that can be formed from $p \rightarrow q$:

- Converse
- Contrapositive
- Inverse

Implication: Example

Let p: It is Saturday. q: Today is a holiday.

Converse: $q \rightarrow p$

>If today is a holiday, then it is Saturday.

Contrapositive: $\sim q \rightarrow \sim p$

If today is not a holiday, then it is not Saturday.

Inverse: $\sim p \rightarrow \sim q$

> If it is not Saturday, then today is not a holiday.

Biconditional

• Denoted by $p \leftrightarrow q$.

Note that the proposition is TRUE only when both p and q have the same truth value.

Truth Table

Another terms of $p \leftrightarrow q$:

- "p iff q"
- "if p then q, and conversely"
- " p is necessary and sufficient condition for q ".

Biconditional: Example

Let p: You can watch a movie q: You buy a ticket

 $p \leftrightarrow q$: "You can watch a movie if and only if you buy a ticket."

This statement is TRUE if p and q are either both true or false.

- If you buy a ticket and can watch a movie or
- If you do not buy a ticket and you cannot watch a movie.

The statement is FALSE when p and q have an opposite truth values.

- If you do not buy a ticket, but you can watch a movie (such as when you get a free ticket).
- If you buy a ticket and cannot watch a movie (such as when you missed the movie).

Precedence of Logical Operators

In general, we will use parentheses to identify the order in logical operators.

Logical Operator	Precedence
~	1
^	2
\vee	3
\rightarrow	4
\leftrightarrow	5

Example:

Construct the truth table of the compound proposition $(p \land \sim q) \rightarrow (\sim p \lor q)$.

Precedence of Logical Operators: Example

Find the truth value of the proposition $(\sim q \land p) \leftrightarrow (\sim p \lor q)$.

p	q	~q	$(\sim q \wedge p)$	~ <i>p</i>	$(\sim p \lor q)$	$(\sim q \land p) \leftrightarrow (\sim p \lor q)$
Т	Τ	F	F	F	Т	F
T	F	Т	Т	F	F	F
F	Τ	F	F	Τ	Т	F
F	F	Т	F	Τ	Т	F

Intan Sabariah Binti Sabri

http://ocw.ump.edu.my/course/view.php?id=443

Tautology, Contradiction and Contingency

The classification of compound propositions are according to their possible values.

Territologic	 Truth value of the compound 		
lautology	proposition that is always True.		

Contradiction • Truth value of the compound proposition that is always False.

	 Truth value of the compound
Contingency	proposition that is neither tautology
	nor contradiction.

Tautology, Contradiction and Contingency: Example 1

Find the truth value of the proposition.

Tautology, Contradiction and Contingency: Example 2

Show that the proposition $(p \land \neg q) \leftrightarrow (\neg p \lor \neg q)$ is a contingency.

p	q	$\sim q$	$p \wedge \sim q$	~ <i>p</i>	$\sim p \lor \sim q$	$(p \wedge \sim q) \leftrightarrow (\sim p \vee \sim q)$
Т	Т	F	F	F	F	Т
T	F	T	Т	F	Т	Т
F	Т	F	F	Т	Т	F
F	F	T	F	T	Т	F

$$\frac{(p \land \sim q) \leftrightarrow (\sim p \lor \sim q)}{(\sim p \lor \sim q)}$$
 is a contingency.

Logical Equivalences

- Different compound propositions that have the same truth values.
- The compound propositions p and q are known as logically equivalent if $p \leftrightarrow q$ is a tautology.
- Denoted by $P \equiv q$

Logical Equivalences: Example 1

Show that the proposition $\frac{\sim (p \wedge \sim q)}{\sim q}$ and $\frac{\sim p \lor q}{\sim q}$ are logically equivalent.

p	q	$\sim q$	$p \wedge \sim q$	$\sim (p \wedge \sim q)$	~ <i>p</i>	$\sim p \lor q$
Т	Т	F	F	Т	F	Т
T	F	Т	Т	F	F	F
F	T	F	F	Т	Т	Т
F	F	Т	F	Т	Т	Т
$\therefore \sim (p \wedge \sim q) \equiv \sim p \lor q.$						

Logical Equivalences: Example 2

Show that the proposition $\sim (p \rightarrow q) \equiv p \land \sim q$.

p	q	$p \rightarrow q$	$\sim (p \rightarrow q)$	$\sim q$	$p \wedge \sim q$
Τ	Т	Т	F	F	F
T	F	F	Т	Т	Т
F	T	T	F	F	F
F	F	Т	F	Т	F

$$\therefore \sim (p \rightarrow q) \equiv p \land \sim q.$$

