‘I Universiti
Malaysia
PAHANG

Programming For Engineers

Organizing C Programs

Y
Wan Azhar Wan Yusofft, Ahmad Fakhri Ab. Nasir?
Faculty of Manufacturing Engineering
wazhar@ump.edu.my?, afakhri@ump.edu.my?

Communitising Technology

0.0 Chapter’s Information

» EXxpected Outcomes
— To organize C source, header and library files.

« Contents
1.0 Introduction
2.0 C Source file
3.0 C Header file
4.0 C Implementation file
5.0 Create static library
6.0 Create dynamic library
7.0 Summary

1.0 Introduction

« We program with user in mind. When the programming is
completed, we deliver executable file to user. User then just double-
click our executable file and the program is “running”.

« However, we also program with other programmer in mind. We
share our codes and most of the times we develop the codes
together in a team. Furthermore, as the codes becomes more
complicated (by the time we want to call our codes as “software”),
we may easily become disorganized with our large number of
functions. Clearly, we need to organize our files.

« Organizing program in C involves using several file types:

1. Main source file is the location of the main (top-level) program
codes. The filename convention is main.c.

2. Header file is the listing of typedef, constant, function
prototypes and derived data types. The file name convention is
filename.h.

1.0 Introduction

3. Implementation source file is the location for function
implementation codes. The file name convention is filename.c.

4. Static library file is the machine codes converted from function
codes for the purpose of integrating with executable file
permanently. The file name convention is filename.a for
Windows. The library file is other programmer to use and not
for the end user.

5. Dynamic link library file is the machine codes for the purpose of
integrating with executable file when needed. The file name
convention is filename.dll. The dynamic link library is needed
by the end user when executing the executable file.

6. The executable file is the program aﬂplication file. The file
name convention is filename.exe. This is the file that starts the
program.

* We will learn organizing the program (codes) through an example
program. In our example, we will write a simple program to display
decimal number in binary format.

2.0 C Main Source File

 In this file we write codes that are top-level. The codes are inside the
main function. The main function is the beginning of a C program.
Inside the main function, we code our top-level instruction from the
beginning to the end of the program. When the main() return 0 to the
operating system, our program exits.

« In this main.c file, we also include all necessary header files that are
needed for the main() functions. A familiar example is the stdio.h
header file.

« Open your CodeBlock IDE and create a new console ¢ project and
name it bitOperations. A main.c file should appear after you double-
click Sources folder on the left pane. Type the following codes in the
main function.

2.0 C Main Source File

Management X .
: main.c x
| Projects | Symbols » 1 #include <stdio.h>
O Workspace 2 #include <stdlib.h>
~ % bitOperations 3 | #include "bitOperations.h"
=18 Sources 4 int main ()
. | main.c > |5
6 int a;
7 bitDisplay(a):
8 return 0;
9 }

« This is the main() program. The source file is save as main.c file. In
the main program, we just code a top-level code i.e. we want to
display a binary number of a decimal number. We create a function
called displayBit() with an integer as the input parameter. This Is
what we call top-level instructions.

2.0 C Main Source File

« We will not code the function displayBit() in the main source
program. We will code the “implementation” of function displayBit()
in a separate file called bitOperations.c. But first, we must include a
header file in our project. The name of the header file is
bitOperations.h. That is the reason in our main.c, we include a
statement #include “bitOperations.h” at the top our program together
with <stdio.h> and <stdlib.h>. The reason the bitOperations.h is in
double quotation mark is because the file location is the same as the
main.c folder location. If the file is in the standard library folder, we
will use #include <bitOperations.h> instead of #include
“bitOperations.h”. The stdio.h is in the standard library folder and
that is why we write #include <stdio.h> in our program.

* Next, we will create the bitOperations.c and bitOperations.h file.

3.0 C Header File

* Next, we add a new header file to the project. Click File>New>File...
and a form like below will appear. Choose C/C++ header and name
the file bitOperations. You do not need to type .h because it
automatically make it .h.

New from template p 4
Projects Category: <All categories> v Go
Build targets T : :

Files h E:a Eﬁ ? Cancel
Custom C/C++ C/C++ Empty file Fortran

User templates header source source

3.0 C Header File

* Under the folder Headers in the left pane, you will find the header

file. Double-click the file and you will see something like the
following.

Management ' X . : . . .
main.c ¥ *bitOperations.h x
ﬂ Projects] Symbols] Files »

1 #ifndef BITOPERATIONS H INCLUDED
O Workspace 2 | #define BITOPERATIONS H INCLUDED
~/*d bitOperations 3
18 Sources 4
L0 maine >
| ' 6 #endif
=& Headers 7 |

------ L1 bitOperations.h

3.0 C Header File

« The green statements (the #if and #endif) in the header file are
automatically created. The purpose is to ensure that when a header
file is included more than once, the compiler will ignore after the first
one.

* Inside the header file we will put our function prototype. We type
void bltDnspIay(mt) as shown below.

Management
_Janeds]Symbds]Hbsb
O Workspace
EI! bitOperations

BB Sources

§ """] main.c

BB Headers

------ =] bitOperations.h

* Notice that we design our function to return void (nothing) and to
receive input of type integer. The semicolon at the end of the
statement is necessary.

[main.c X] bitOperations.h X]

#ifndef BITOPERATIONS H INCLUDED
#define BITOPERATIONS H INCLUDED

void bitDisplay(int);

fendif

B s G BT VI O I

4.0 C Implementation File

« Now, we want to code our function displayBit(). We will code in
another file called bitOperations.c. Thus, we create the
implementation file. Click File>New>File... and a form like below will
appear again. This time select C/C++ source and name it
bitOperations (no need .c extension).

New from template X
Projects Category: <All categories> ~ =
Build targets - : :

Files h 63 33’ P Cancel
Custom C/C++ C/C++ Empty file Fortran

User templates header source source

1

4.0 C Implementation File

« We code the details of the bitDisplay() function in the
bitOperations.c. Do not worry if you are still unclear what the codes
are all about. We will learn bit-wise operations later. Type what is
shown below.

Manage-ment . = [main.c XI bitOperations.h XI bitOperations.c X]
« Projects | Symbols | Files » 1 | void bitDisplay (int a)
O Workspace 2 I
E-ﬂ_bitOperations 3 int i, k, j, mask;
BB Sources 4 i - L:))
""" _1 bitOperations.c 2 izimi (=D§?L:%m?i=6' ﬁ;lii:?lnary. ra)i
] main.c 7 (’ ’
E-@Headers] if ((3==23) || (3==15) I (3==T7))
-] bitOperations.h 9 printf (" ");
10 mask = 1 << J:
11 k = a & mask;
12 if (k == 0)
13 printf ("0");
14 else
15 printf ("1"):
1o 1
17 printf ("\n"):
18 | 3
19

4.0 C Implementation File

 Now we have completed our program organization using 3 files. We
have successfully:

1. Separate the function prototype declarations from the function
implementations. We put our function prototypes in the header
file i.e. bitOperations.h file, while we put our function
iImplementations in the bitOperations.c file.

2. We do our top level programming in the main.c file.

* Now, let's execute our program. Add the statement a = 255 in the
main program as shown. Then, compile and run. If there is error,
correct first and run again. You program and output, should look
something like this.

4.0 C Implementation File

Manage-ment : x main.c ¥ bitOperations.h x| bitOperations.c = *
{| Projects | Symbols | Files } 1 #include <stdio.h>
© Workspace 2 $include <stdlib.h>
—*§ bitOperations 3 #include "bitOperations.h"
EHB Sources 4 int main{()
L i : 5 |2{
bitOperations.c 6 int a;
- R 7 a = 255;
BE Headers 8 bitDisplay(a):
-] bitOperations.h 9 return 0;
10 }

B ' DAWan-Azhar-Wan-Yusoff\ WAWY-Programming-for-Engineers\bitOperations\bin\Debug\bitOperation:

Decimal = 255 Binary: 00000000 00000000 00O 11111111

iProcess returned @ (0x0) execution time : 0.085 s
IPress any key to continue.

4.0 C Implementation File

« Let's modify the main program as shown below. On line 13, we
create a loop in order to display the decimal number from 0 to 15.
Compile and run. You should get something similar to the output

12 Binary: 00000000 00000000 ©0OV0ROE PPVR1100
13 Binary: 00000000 00000000 00RO 0001101
14 Binary: 00000000 00000000 ©0PR0Pe 0P0e1110

below.
B | D:\Wan-Azhar-Wan-Yusoff\WAWY-Programming-for-Engineers\bitOperations\bin\Debug\bitOperations.exe

1 #include <stdio.h> = @ Binary: 00000000 00000000 00000000 00000000
o o =1 Binary: 00000000 00P0GP00 0PGOSR 0POEOOL
2 #include <stdlib.h> =2 Binary: 00000000 0P0PP000 PAEEORER 0BEPER10
3 #include "bitOperations.h" =3 Binary: 00000000 ©0P0ER00 ©AVGOLED 0POPS11
4 int main|() =4 Binary: 00000008 00P0G00 0POSPEER BPERO100
5 |91 =5 Binary: 00000000 00000000 0POSELED 00000101
6 ‘ int a; =6 Binary: 00000000 00000000 0PSO0P0 000110
. ; =7 Binary: 00000000 0000000 0POAELOR 0PEEO111
1 for (a=0; a<lbi att) = 8 Binary: 00000000 0POAP0AE PPEOARED 0A0A1000
8 bitDisplay(a); =9 Binary: 00000000 00000000 0PEAEES 0PO1001
g return 0; = 10 Binary: 00000000 00PO0P00 0ROV 0001010
10 } = 11 Binary: 00000000 POP0EROO 0POAELER 0001011

Process returned @ (©xe) execution time :
Press any key to continue.

4.0 C Implementation File

* Now, we inspect our program directory. In my case, my directory isin
bitOperations folder. Inside there, | have the main.c file,
bitOperations.c file and bitOperations.h file and few other CodeBlock

specific files.
D(E) » PFESem 12016-2017 > Week04 > bitOperations » v U Search bitOpera... 2
Fas
~ [Name Date modified Type
bin 16/10/2016 7:03 PM File folder
obj 16/10/2016 7:03 PM File folder
'€ bitOperations.c 16/10/2016 8:50 PM C source file
W bitOperations.cbp 16/10/2016 9:08 PM project file
o) bitOperations.depend 16/10/2016 9:03 PM DEPEND File
W bitOperations.h 16/10/2016 8:45 PM Header file
bitOperations.layout 16/10/2016 9:21 PM LayOut Document
€ mainc 16/10/2016 9:02 PM C source file

4.0 C Implementation File

« So, where is our executable file? We have to look into the bin folder.
In my case, it is under the Release folder. Usually it is under Debug
folder if you compile under debug mode. So, bitOperations.exe is
our “software”. This is the file that we give to our friend - not the
source code.

n12016-2017 » Week04 > bitOperations > bin » Release v U Search Release |/
A [Name Date modified Type
bitOperations.exe 16/10/2016 9:14 PM Application

« We can execute a console file by executing under MS Command
Prompt program. Copy our bitOperations.exe file to our Desktop
location. Open Command Prompt program. Below is the Command
Prompt window.

4.0 C Implementation File

| B Command Prompt — O X

Microsoft Windows [Version 10.0.10586]
(c) 20815 Microsoft Corporation. All rights reserved.

C:\Users\WanAzhar>cd Desktop

C: \Users\NanAzhaP\Desktop>b1t0peratlons

=0 Binary: 00000000 00000000 0OLPPRO BB
Binary: 00000000 00000L00 00RO ©0PLeLe1
Binary: 00000000 00000000 000ROVLY 000010
Binary: 00000000 00000000 000PVERE ©OPR11
Binary: 00000000 00000000 000COREY 00VRO100
Binary: 00000000 00000000 00RO ©LeV1e1
Binary: 00000000 00000LC0 00RRB0LE ©Bee110
Binary: 00000000 00000000 000RORLO 00RLE111
Binary: 00000000 00000000 0OLPPRO ©VL1000
Binary: 00000000 00000000 ©0PERRY 000eleel
Binary: 00000000 00000000 00000000 00001010
Binary: 00000000 00000000 000P00RO 00001011
Binary: 00000000 00000000 00RO 0001100
Binary: 00000000 00000000 000PPELO VL1101
Binary: 00000000 00000000 00RO ©Ve1110

1
2
3
4
5
6
7
8

éC:\Users\NanAzhar\Desktop> I

« We can execute a console file by executing under MS Command
Prompt program. Copy our bitOperations.exe file to our Desktop
location. Open Command Prompt program. Below is the Command
Prompt window.

4.0 C Implementation File

|
! B Command Prompt

Microsoft Windows [Version 10.6.10586]
I(c) 2015 Microsoft Corporation. All rights reserved.

C:\Users\WanAzhar>cd Desktop

C: \Users\WanAzhar\Desktop>b1t0peratlons

i Binary: 00000000 00000000 00000000 0000
Binary: 00000000 0000000 00DOLLRYO 0VPLLLO1
Binary: 00000000 00000000 00000000 0010
Binary: 00000000 ©0000000 00000000 00000011
Binary: 00000000 0000000 0POERLLE 0ELRLL1EO
Binary: 00000000 00000000 00000000 00000101
Binary: 00000000 00000000 0000VCO V0110
Binary: 00000000 ©00000RE 00DORLROO 0PPLE111
Binary: 00000000 00000000 0000000 001000
Binary: 00000000 ©00000RE 00DOLRLRVO 0VLPL1001
Binary: 00000000 0000000 0POELRLLE 0ELRL1010
Binary: 00000000 ©0000000 00000000 00001011
Binary: 00000000 00000000 00VEVLLE ©EBLR1100
Binary: 00000000 00000000 00000000 00001101
Binary: 00000000 00000000 00000000 00001110

VOOV WNE®

;C:\Users\WanAzhar\Desktop>

Communitising Technology

4.0 C Implementation File

» If you do not know where the location of Command Prompt, search
the program under windows. Open the Command Prompt like the
previous figure. Go to the location of your copy of bitOperations.exe.
In my case, | copied to Desktop directory. Then type bitOperations
plus enter. | get the output shown in the previous figure. That is how
you execute a console program.

 Your friend who has a copy of your bitOperations.exe file can
execute (run) the program under his MS Command Prompt without
the need of your source or header file. Everything the program need
IS already integrated inside the bitOperations.exe.

5.0 Creating Static Library

« The executable file that we created is a collection of main.c,
bitOperations.c and the required library in one executable file. For
example, we use the printf() function by invoking stdio.h because the
library for printf() is a part of standard library. The “code” of printf() is
integrated into our bitOperations.exe. The library for printf() is a
standard static library. We do not create the function printf(), we just
use it.

« We can also create our own library. We create a library file so that
we can have modular functions. Also, other programmer can use our
library for their purpose but without our protected source code. This
IS consistent with the idea that our function implementation file is our
Intellectual properties. We can sell our library to other programmer
so that they can make executable file for the end user.

5.0

Creating Static Library

* Open CodeBlock IDE. Click Project> New>Project... and a window
similar like below will appear. Choose Static library. Give the file
name bitOperationsLib.

Category: |«=::AII categories> g | Go
AP N rY
- SoL) ® STL Cancel
QT4 project 5DL project SFML project 5TL port
application
@ Smartwin @ W
1 I - 1 I '-‘.;-‘-'-'
Shared SmartWin Static library TriCore
library project Project
- View as
= & |
@ Large icon:
Win32 GUI wxWidgets .
project project v| Olist

5.0 Creating Static Library

* In the menu, click Project>Add file...> and select our bitOperations.c
which is our function implementation file.

« Remove the main.c file by right clicking and selecting Remove file
from project. You should have only bitOperations.c file.

« Compile the program (not execute the program). If there is no error,
the library is created. You should find under the Release folder the
file name libbitOperationsLib.a file.

Llippoara urganize INEW Upen

=~ v 4 « Week04 » bitOperations » bitOperationlib » bin > Release v O s
m Desktop A A [] Name Date modified Type
Pict b g
s ricres | libbitOperationLib.a 17/10/2016 210 PM A File

Documents o

LI

5.0 Creating Static Library

The .a extension is the static library file. You give this file and the
bitOperations.h file to other programmer who want to use your
program. This ensure that your codes is protected from being
manipulated by other programmer. For example, | give these two
fles to my programmer friend: bitOperations.n and
libbitOperationLib.a files. How is he going to use this?

First, he opens the header file (bitOperations.h) and then he knows
already what the function is doing by reading the prototype
statement.

void bitDisplay(int);

5.0 Creating Static Library

« He knows that if he can use the function by calling bitDisplay(a)
whereas he knows that a must be integer value. That is the use of
prototypes and the header files. It just tell us what is required to use
a function. We do not need the details.

* Next, he copy the bitOperations.h to his main.c file directory.

m 12016-2017 > Week04 > bitOperations » friendProgram v O Search frien
] Name Date modified Type
" friendProgram.cbp 17/10/2016 225 PM project file
€ main.c 5/11/2015 4:09 AM C Source file
' bitOperations.h 16/10/2016 8:45PM Header file

5.0 Creating Static Library

* Now he is ready to use the static library. For example, his main
program can be like this:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "bitOperations.h"
4

5 int main ()

6 |=F{

! int a;

8 printf ("Please enter your decimal number:\n"):
9 scanf ("%d", &a) ;

10 bitDisplay(a):

11 return 0;

12 }

13

5.0 Creating Static Library

« Remember, he has to write #include “bitOperations.h” and the
header must be in the same directory as his main.c file. Next, he has
to add the static library to his program. Click Project>Build option...
then select Linker Setting. In Other linker options type
libBitOperationLib.a. click OK. When he compiles, it will integrate his
main.c program with the static library program. The dialog box is

L] 5
Someth | ng | | ke below. Project build options O X
friendProgram Selected compiler
~Debug GNU GCC Compiler -
“-Release

Compiler settings Linker settings Search directories Pre/post build steps CuElz‘

Paolicy: ~

Link libraries: Other linker options:
libbitOperationLib.a

Add || Edit = Delete | Clear

Copy selected to...
coe

5.0 Creating Static Library

« Compile. If there is no error, execute the program. In my case, | get
something like below.

B " "EN\PFE Sem 1 2016-2017\Week04\bitOperations\f... —

« He can distribute his .exe file to the end user. Users will use MS
Command Prompt to execute the program. Remember, he only has
to distribute the .exe file because the function is already integrated.
Now, you understand that any programmer can use your function
without knowing the details of your functions.

6.0 Creating Dynamic Link Library

« When our project is large, our .exe file can be very large because
we integrate many library to our .exe program. We should only link
together the library that we really need for our program. Dynamic
library Link on the other hand will link to executable file when
needed i.e when the program is being executed. In this case, the
library must be distributed together with the executable file. Without
the dynamic link library, we cannot execute the .exe file

« Some of the process is similar with the static library. First, we create
new project and select shared library as our type of project.

6.0 Creating Dynamic Link Library

Projects Category: |4AII categories>
Build targets
Files - soL) ") ST
Custom QT4 project SDL project SFML project STL port
User templates application
Shared SmartWin Static library ~ TriCore
library project Project
-
= &
Win32 GUI wxWidgets
project project

« Give whatever name you want for the project (I give sharedLib).
Remove the main.c file (Remove file from project) and add the
bitOperations.c file (Project>Add files..) just like we did for the static
library project. Just compile the program without executing. Your
dynamic library should be created.

6.0 Creating Dynamic Link Library

Week04 » bitOperations » sharedlib » bin > Release v U Search Release QP
A [Name Date modified Type

D libsharedlib.a 17/10/2016 3:14 PM A File

B libsharedLib.def 17/10/2016 3:14 PM Export Definition File

%] libsharedLib.dll 17/10/2016 3:14 PM Application extension

« The libsharedLib.dll is our dynamic link library. To use this we type
libsharedLib.dll in the Other linker option pane just like the static
library.

6.0 Creating Dynamic Link Library

Project build options O hd

friendProgram | Selected compiler

~Debug GNU GCC Compiler ~
~Release

Compiler settings Linker settings Search directories Pre/post build steps Cu 4| *

~

Policy:

Link libraries: Other linker options:
libsharedLib.dll

Add | Edit Delete || Clear

Copy selected to...

« If you compile and execute without error you should get the .exe file.

« So what is the difference between using static library versus
dynamic library? Using static library, you application program
integrate the library. Using dynamic library, you have to supply the
dynamic library together with your .exe program. Otherwise, your
.exe program cannot run.

« Advantage of using dynamic library is that your .exe file is not large.
Also, other .exe program created by other programmer also can use
your dynamic library. That is why we call it shared library.

/7.0 Summary

 In this note, we organize our ¢ program for proper program
development:

1. We created main.c file and code our top-level instructions
inside it. We include our header file also inside main.c file.

2. We created header file and declare all our function prototypes
inside it. We protect is with #ifndef, #define and #endif so that
our header file is not included more than once.

3. We created implementation file and code all our function details
(our intellectual properties) inside it.

4. We created static library and we give it to our friends without
giving the source codes. He can integrate our static library with
his .exe file.

/7.0 Summary

5. We created dynamic library and give it to our friends without
giving the source codes. But our friends cannot integrate our
dynamic library with his .exe file. He has to supply our dynamic

library to the end users before they can use the .exe program.
It means we share the library.

