
Programming For Engineers

Organizing C Programs

by

Wan Azhar Wan Yusoff1, Ahmad Fakhri Ab. Nasir2

Faculty of Manufacturing Engineering
wazhar@ump.edu.my1, afakhri@ump.edu.my2

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



0.0 Chapter’s Information

• Expected Outcomes

– To organize C source, header and library files.

• Contents

1.0 Introduction

2.0 C Source file

3.0 C Header file

4.0 C Implementation file

5.0 Create static library

6.0 Create dynamic library

7.0 Summary

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



1.0 Introduction

• We program with user in mind. When the programming is
completed, we deliver executable file to user. User then just double-
click our executable file and the program is “running”.

• However, we also program with other programmer in mind. We
share our codes and most of the times we develop the codes
together in a team. Furthermore, as the codes becomes more
complicated (by the time we want to call our codes as “software”),
we may easily become disorganized with our large number of
functions. Clearly, we need to organize our files.

• Organizing program in C involves using several file types:

1. Main source file is the location of the main (top-level) program
codes. The filename convention is main.c.

2. Header file is the listing of typedef, constant, function
prototypes and derived data types. The file name convention is
filename.h.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



1.0 Introduction

3. Implementation source file is the location for function
implementation codes. The file name convention is filename.c.

4. Static library file is the machine codes converted from function
codes for the purpose of integrating with executable file
permanently. The file name convention is filename.a for
Windows. The library file is other programmer to use and not
for the end user.

5. Dynamic link library file is the machine codes for the purpose of
integrating with executable file when needed. The file name
convention is filename.dll. The dynamic link library is needed
by the end user when executing the executable file.

6. The executable file is the program application file. The file
name convention is filename.exe. This is the file that starts the
program.

• We will learn organizing the program (codes) through an example
program. In our example, we will write a simple program to display
decimal number in binary format.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



2.0 C Main Source File

• In this file we write codes that are top-level. The codes are inside the

main function. The main function is the beginning of a C program.

Inside the main function, we code our top-level instruction from the

beginning to the end of the program. When the main() return 0 to the

operating system, our program exits.

• In this main.c file, we also include all necessary header files that are

needed for the main() functions. A familiar example is the stdio.h

header file.

• Open your CodeBlock IDE and create a new console c project and

name it bitOperations. A main.c file should appear after you double-

click Sources folder on the left pane. Type the following codes in the

main function.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



2.0 C Main Source File

• This is the main() program. The source file is save as main.c file. In

the main program, we just code a top-level code i.e. we want to

display a binary number of a decimal number. We create a function

called displayBit() with an integer as the input parameter. This is

what we call top-level instructions.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



2.0 C Main Source File

• We will not code the function displayBit() in the main source

program. We will code the “implementation” of function displayBit()

in a separate file called bitOperations.c. But first, we must include a

header file in our project. The name of the header file is

bitOperations.h. That is the reason in our main.c, we include a

statement #include “bitOperations.h” at the top our program together

with <stdio.h> and <stdlib.h>. The reason the bitOperations.h is in

double quotation mark is because the file location is the same as the

main.c folder location. If the file is in the standard library folder, we

will use #include <bitOperations.h> instead of #include

“bitOperations.h”. The stdio.h is in the standard library folder and

that is why we write #include <stdio.h> in our program.

• Next, we will create the bitOperations.c and bitOperations.h file.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



3.0 C Header File

• Next, we add a new header file to the project. Click File>New>File…

and a form like below will appear. Choose C/C++ header and name

the file bitOperations. You do not need to type .h because it

automatically make it .h.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



3.0 C Header File

• Under the folder Headers in the left pane, you will find the header

file. Double-click the file and you will see something like the

following.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



3.0 C Header File

• The green statements (the #if and #endif) in the header file are

automatically created. The purpose is to ensure that when a header

file is included more than once, the compiler will ignore after the first

one.

• Inside the header file we will put our function prototype. We type

void bitDisplay(int); as shown below.

• Notice that we design our function to return void (nothing) and to

receive input of type integer. The semicolon at the end of the

statement is necessary.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

• Now, we want to code our function displayBit(). We will code in

another file called bitOperations.c. Thus, we create the

implementation file. Click File>New>File… and a form like below will

appear again. This time select C/C++ source and name it

bitOperations (no need .c extension).

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

• We code the details of the bitDisplay() function in the

bitOperations.c. Do not worry if you are still unclear what the codes

are all about. We will learn bit-wise operations later. Type what is

shown below.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

• Now we have completed our program organization using 3 files. We

have successfully:

1. Separate the function prototype declarations from the function

implementations. We put our function prototypes in the header

file i.e. bitOperations.h file, while we put our function

implementations in the bitOperations.c file.

2. We do our top level programming in the main.c file.

• Now, let’s execute our program. Add the statement a = 255 in the

main program as shown. Then, compile and run. If there is error,

correct first and run again. You program and output, should look

something like this.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

• Let’s modify the main program as shown below. On line 13, we

create a loop in order to display the decimal number from 0 to 15.

Compile and run. You should get something similar to the output

below.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

• Now, we inspect our program directory. In my case, my directory isin

bitOperations folder. Inside there, I have the main.c file,

bitOperations.c file and bitOperations.h file and few other CodeBlock

specific files.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

• So, where is our executable file? We have to look into the bin folder.

In my case, it is under the Release folder. Usually it is under Debug

folder if you compile under debug mode. So, bitOperations.exe is

our “software”. This is the file that we give to our friend - not the

source code.

• We can execute a console file by executing under MS Command

Prompt program. Copy our bitOperations.exe file to our Desktop

location. Open Command Prompt program. Below is the Command

Prompt window.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

• We can execute a console file by executing under MS Command

Prompt program. Copy our bitOperations.exe file to our Desktop

location. Open Command Prompt program. Below is the Command

Prompt window.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



4.0 C Implementation File

• If you do not know where the location of Command Prompt, search

the program under windows. Open the Command Prompt like the

previous figure. Go to the location of your copy of bitOperations.exe.

In my case, I copied to Desktop directory. Then type bitOperations

plus enter. I get the output shown in the previous figure. That is how

you execute a console program.

• Your friend who has a copy of your bitOperations.exe file can

execute (run) the program under his MS Command Prompt without

the need of your source or header file. Everything the program need

is already integrated inside the bitOperations.exe.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



5.0 Creating Static Library

• The executable file that we created is a collection of main.c,

bitOperations.c and the required library in one executable file. For

example, we use the printf() function by invoking stdio.h because the

library for printf() is a part of standard library. The “code” of printf() is

integrated into our bitOperations.exe. The library for printf() is a

standard static library. We do not create the function printf(), we just

use it.

• We can also create our own library. We create a library file so that

we can have modular functions. Also, other programmer can use our

library for their purpose but without our protected source code. This

is consistent with the idea that our function implementation file is our

intellectual properties. We can sell our library to other programmer

so that they can make executable file for the end user.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



5.0 Creating Static Library

• Open CodeBlock IDE. Click Project> New>Project… and a window

similar like below will appear. Choose Static library. Give the file

name bitOperationsLib.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



5.0 Creating Static Library

• In the menu, click Project>Add file…> and select our bitOperations.c

which is our function implementation file.

• Remove the main.c file by right clicking and selecting Remove file

from project. You should have only bitOperations.c file.

• Compile the program (not execute the program). If there is no error,

the library is created. You should find under the Release folder the

file name libbitOperationsLib.a file.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



5.0 Creating Static Library

• The .a extension is the static library file. You give this file and the

bitOperations.h file to other programmer who want to use your

program. This ensure that your codes is protected from being

manipulated by other programmer. For example, I give these two

files to my programmer friend: bitOperations.h and

libbitOperationLib.a files. How is he going to use this?

• First, he opens the header file (bitOperations.h) and then he knows

already what the function is doing by reading the prototype

statement.

void bitDisplay(int);

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



5.0 Creating Static Library

• He knows that if he can use the function by calling bitDisplay(a)

whereas he knows that a must be integer value. That is the use of

prototypes and the header files. It just tell us what is required to use

a function. We do not need the details.

• Next, he copy the bitOperations.h to his main.c file directory.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



5.0 Creating Static Library

• Now he is ready to use the static library. For example, his main

program can be like this:

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



5.0 Creating Static Library

• Remember, he has to write #include “bitOperations.h” and the

header must be in the same directory as his main.c file. Next, he has

to add the static library to his program. Click Project>Build option…

then select Linker Setting. In Other linker options type

libBitOperationLib.a. click OK. When he compiles, it will integrate his

main.c program with the static library program. The dialog box is

something like below.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



5.0 Creating Static Library

• Compile. If there is no error, execute the program. In my case, I get
something like below.

• He can distribute his .exe file to the end user. Users will use MS
Command Prompt to execute the program. Remember, he only has
to distribute the .exe file because the function is already integrated.
Now, you understand that any programmer can use your function
without knowing the details of your functions.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



6.0 Creating Dynamic Link Library

• When our project is large, our .exe file can be very large because

we integrate many library to our .exe program. We should only link

together the library that we really need for our program. Dynamic

library Link on the other hand will link to executable file when

needed i.e when the program is being executed. In this case, the

library must be distributed together with the executable file. Without

the dynamic link library, we cannot execute the .exe file

• Some of the process is similar with the static library. First, we create

new project and select shared library as our type of project.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



6.0 Creating Dynamic Link Library

• Give whatever name you want for the project (I give sharedLib).

Remove the main.c file (Remove file from project) and add the

bitOperations.c file (Project>Add files..) just like we did for the static

library project. Just compile the program without executing. Your

dynamic library should be created.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



6.0 Creating Dynamic Link Library

• The libsharedLib.dll is our dynamic link library. To use this we type

libsharedLib.dll in the Other linker option pane just like the static

library.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



6.0 Creating Dynamic Link Library

• If you compile and execute without error you should get the .exe file.

• So what is the difference between using static library versus
dynamic library? Using static library, you application program
integrate the library. Using dynamic library, you have to supply the
dynamic library together with your .exe program. Otherwise, your
.exe program cannot run.

• Advantage of using dynamic library is that your .exe file is not large.
Also, other .exe program created by other programmer also can use
your dynamic library. That is why we call it shared library.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



7.0 Summary

• In this note, we organize our c program for proper program

development:

1. We created main.c file and code our top-level instructions

inside it. We include our header file also inside main.c file.

2. We created header file and declare all our function prototypes

inside it. We protect is with #ifndef, #define and #endif so that

our header file is not included more than once.

3. We created implementation file and code all our function details

(our intellectual properties) inside it.

4. We created static library and we give it to our friends without

giving the source codes. He can integrate our static library with

his .exe file.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir



7.0 Summary

5. We created dynamic library and give it to our friends without

giving the source codes. But our friends cannot integrate our

dynamic library with his .exe file. He has to supply our dynamic

library to the end users before they can use the .exe program.

It means we share the library.

PFE – Organizing C Programs by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir


