‘I Universiti
Malaysia
PAHANG

Programming For Engineers

Structure Data Type

Y
Wan Azhar Wan Yusofft, Ahmad Fakhri Ab. Nasir?
Faculty of Manufacturing Engineering
wazhar@ump.edu.my?, afakhri@ump.edu.my?

Communitising Technology

0.0 Chapter’s Information

« EXxpected Outcomes
— To create and use structure data type programming.

« Contents
1.0 Structure data type
2.0 Nested structure data type
3.0 Array of structure data type
4.0 typedef structure data type
5.0 Structure and Pointer
6.0 Summary

1.0 Structure Data Type

« We know that an array data type can group many elements of
similar data type under one variable. For example, when we define
an array int score[10], we have grouped together 10 integer values
under variable score. However, an array cannot group elements of
different data types under one variable. For example, we cannot
group 5 integers and 3 doubles under one array variable.

« A structure is a derived data type that groups elements of different
data types under one variable. We can group integer, character,
double etc. under one variable.

« We give an example below to show the idea of structure data type.

1.0 Structure Data Type

#include <stdio.h>

#include <stdlib.h> B ' "D:AWan-Azhar-Wan-Yusoff\WAWY-Programming-for-Engineers\Course Notes\Assessmn
43 ~11318a QJ-,..' " - -

e Name: Ali Bin Ahmad

ID: 224
CGPA: 3.140000

int main()

struct student { Process returned © (0x0) execution time : 0.122 s
int ID; Press any key to continue.
char name[100];

double CGPA;
}s

struct student Ali;

Ali.ID = 224;
strcpy(Ali.name, "21i Bin Ahmad");
Ali.CGPA = 3.14;

printf ("Name:\t%$s\n",Ali.name) ;
printf ("ID:\t%d\n",Ali.ID);
printf ("CGPA:\t%$f\n",Ali.CGPA) ;
return 0U;

1.0 Structure Data Type

* In the previous program, we define student structure by using a C
keyword “struct”. Then, we group 3 different elements inside the
structure namely, ID, name and CGPA. Notice that, we group 3
different data types i.e. an integer, an array of 100 characters (string)
and a double. Notice also that we define structure data type called
“student” as a new data type. This does not create the variable. It is
only the data type. The variable is created when we declare the
variable such as “struct student Ali". We can say that Ali is a struct
student data type.

1.0 Structure Data Type

« How do we access the structure variable? We use “dot” operator to
access the variable. For example, if we want to set the ID value for
Ali, we write “Ali.ID = 0224,".We need to be very careful for string.
We cannot write “Ali.name = Ali Bin Ahmad;”. THIS IS WRONG! In
C, we use a function strcpy() in <string.h> to set string variable.
Thus, we write strcpy(Ali.name,”Ali Bin Ahmad”); This will copy the
string.

2.0 Nested Structure Data Type

We can nest structure data type by making structure data type
inside another structure data type. A student is part of university
employee. Thus, we can make a student inside university employee
data type together with staff data type. We give an example below.

Nested Structure Data Type

:::::;: Dfltq B ' F\Wan-Azhar-Wan-Yusoff\WAWY-Programming-for-Engineers\WAWY_C_Programming_Tutor
gl UMP Staff: Wan Yusoff ID: 224 Salary: 2500.000000
: . UMP Student: Wan Ali ID: 231 CGPA: 3.140000

int ID;

§$I£?§£?“’ Process returned 0 (0x0) execution time : 0.016 s

}:

struct staff |
int ID;
char name[100];
double salary;

Press any key to continue.

}:
struct employee]
struct staff wawy;
struct student ali;
int employeeNumber;
}:
struct employee ump;
Strcpy (ump.wawy.name, "Wan Yusofi”):
ump.wawy.ID = 22Z4;
ump.ali.ID = 231;
strcpy(ump.ali.name, "Wan A1i");
ump.ali.CGPA = 3.14;
printf ("UMP Staff: $s\tID: $d\tSalary: $Ii\n",ump.wawy.name, ump.wawy.ID, ump.wawy.salary):
printf ("UMP Student: $s\tID: $d\tCGPA: $f\n",ump.ali.name,ump.ali.ID,ump.ali.CGPA):;
return 0;

2.0 Nested Structure Data Type

* In the previous example, we nest the “struct student” and “struct
staff” into “struct employee”. Then, we can include student and staff
into our employee structure.

1 | l.

3.0 Array of Structure Data Type

« We can also make collection of similar structure data type by using
an array of structure. We show an example of such array below.

$include <stdioc.h>

3 cine Seti s B | FA\Wan-Azhar-Wan-Yusoff\WAWY-Programming-for-Engineers\WAWY_C_Programming_Tt

$include <3tring.h>

R Name: Alili Bin Ahmad ID: 148 CGPA: 3.140000
I Name: Abu Bin Ahmad ID: 212 CGPA: 3.670000
struct studentc |
int ID:
st "Ocess returned @ (0x0) execution time : 0.047 s
e Press any key to continue.
struct student FEP[Z]:
FEP[0].ID = 0224;

FEKP[0] .CGPA = 3.14;
strcpy (FEP[0] .name, "Ali Bin Ahmad"™);
FEP[1].ID = 03Z4;
FEKP[1] .CGPA = 3.&87;
strcpy (FEF[1] .name, "4bw Bin Ahmad"):
int i;
for (i=0;i<Z;i++)
{
printf ("Name: %s\tID: $d4d\tCGPA: %f\n",FEP[i].name, FEP[i].ID,FEP[1i].CGER);
}

return 0;

3.0 Structure Data Type

* In the previous example, we create two collection of student
structure data type. We then, fill up the data structure and display
them on the screen. Notice the use of subscript to access the data

structure.

el |

4.0 typedef Structure Data Type

« Some programmers prefer to use “struct student Ali" to remind us
that Ali is a “struct student” type. However, some practice use
STUDENT Ali so that we know Ali is a typedef STUDENT. What they
do is to declare struct as typedef struct? We give an example below.

::::j;: ;zi:‘x‘n B | FA\Wan-Azhar-Wan-Yusoff\WAWY-Programming-for-Engineers\WAWY_C_Programming
EETT .
? main (CGPA Ali = 2.5402000
REfUCE Feient | Salary wawy = 3425.450000
int ID;

char name[100];
double CGPA;

g Process returned © (0x0) execution time : 0.031 s

typedef struct | .
g Press any key to continue.

char name[100];

double salary;

} STAFF;

struct student Ali;
STAFF wawy;

Ali.CGPA = 2.54;
wawy.salary = 3425.45;

printf("CGPA Ali = $f\n",Ali.CGPR);
printf("Salary wawy = $I\n",wawy.salary):
return 0;

4.0 typedef Structure Data Type

* In the above example, we DEFINE two structure data types: student
and staff. But, in the second definition, we use typedef so that we
can use the name during declaration. We usually use CAPITAL
LETTER for typedef definition. Now, for declaration we use:

struct student Ali;
STAFF wawy;

« Using typedef, it is easier to declare because it is shorter. But, by
using struct, we are reminded about the variable is a struct data

type.

5.0 Structure Data Type and Pointer

« As with any function calling, we can either pass variables
(parameters) to a function as values or as references. When we
pass by reference, we pass the top address of the parameter.
Similarly, when we pass a structure to a function, we can pass either
as value or as reference (address). An example below illustrates the
point.

5.0 Structure Data Type and Pointer

B ' "FAWan-Azhar-Wan-Yusoff\WAWY-Programming-for-Engineers\New folder\wawyStructF

Before function, the Salary: 2500.000000
‘Wp“hf:;?ﬁ;f During function, the Salary: 1800.000000
i After function, the Salary: 2500.000000

char name[100];
double salary;
} STAFF; Process returned 0 (0x0) execution time : 0.033 s

Press any key to continue.

$include <

o

o
2inrlnde <=
Fglnciluae =)

int main()

{
STAFF wawy;
wawy.salary = 2500.0;
printf("Before function, the Salary: $f\n",wawy.salary):
initialize (wawy):
printf("After function, the Salary: $f\n",wawy.salary):
return 0;

void initialize (STAFF wawy)
{
wawy.salary = 1300.0;
printf("During function, the Salary: $f\n",wawy.salary):

5.0 Structure Data Type and Pointer

* In the previous program, we pass a structure STAFF to the function
initialize(). But, we pass by value. Then, we change the value of
wawy salary. We notice that because we only pass by value, the
value of wawy salary does not change outside the function, as
shown by the output. In order to change the value, we need to pass
the STAFF as reference so that the function has the address. An
example below shows the passing by reference.

5.0 Structure Data Type and Pointer

B ' "FA\Wan-Azhar-Wan-Yusoff\WAWY-Programming-for-Engineers\New folder\wawyStruct

Before function, the Salary: 2500.000000
t”“mefz;?f;f During function, the Salary: 1800.000000
LT (e function, the Salary: 1800.000000
double salary;
} STAFF; Process returned 0 (0x0) execution time : ©0.019 s
_ _ Press any key to continue.
int main()

{

STAFF wawy;

wawy.salary = Z2500.0;

printf ("Before function, the Salary: $f\n",wawy.salary):
initialize (swawy);

printf ("After functicn, the Salary: $f\n",wawy.salary):
return 0;

}

void initialize (STAFF* wawy)
{
wawy->salary = 1800.0;
printf("During function, the Salary: $f\n",wawy->salary):

5.0 Structure Data Type and Pointer

 In the previous example, we pass the structure STAFF to the
function by reference i.e. &wawy. The receiving function also
receives the structure as pointer i.e. STAFF* wawy.

» We access structure pointer NOT BY USING DOT OPERATOR. We
access pointer structure by using an ARROW OPERATOR i.e.” ->" a
dash and a greater than symbol. For example, wawy->salary =

1800.0 instead of wawy.salary = 1800.0. THIS IS AN IMPORTANT
DIFFERENCE.

6.0 Summary

* In this note, we have learned about a very important data type which
IS the structure data type. We know that a structure data type is a
collection of different data type including another structure data type
and also an array of data type. We also know that sometimes it is
easier to define as typedef so that when we declare a structure data
type, we don't have to type the word “struct”. Lastly, a very important
C language is to use the pointer to struct as a mechanism to pass
address to function. We use different notation to access the member
data i.e. the arrow operator -> as the operator for structure pointer.
We will learn more.

6.0 Summary

« Competencies that you need to know about struct data type: You
must be able to:

Define structure data type

Define pointer structure data type.

Define typedef structure data type.

Access members of structure data type using dot operator.
Access members of structure data type using arrow operator.
Use nested structure data type.

Use array of structure data type

Pass structure data type to function and return a structure from
a function.

O NOOEWNR

