‘I Universiti
Malaysia
PAHANG

Programming For Engineers

The Six Basic Elements
of C Programming

Y
Wan Azhar Wan Yusofft, Ahmad Fakhri Ab. Nasir?
Faculty of Manufacturing Engineering
wazhar@ump.edu.my?, afakhri@ump.edu.my?

0.0 Chapter’s Information

« EXxpected Outcomes
— To review six elements of basic C programming competency.

« Contents
1.0 Standard Data Type
2.0 Console I/O
3.0 Expression
4.0 Selection Structure
5.0 Repetition Structure
6.0 Function

el |

- Before we move to intermediate programming, review of basics C
programming is necessary. The six programming elements are:
standard data types, console 1/O, expressions, selection
structure, repetition structure and functions. We assume you know
how to create, compile and link a C program under Windows and

Code::Blocks IDE.

1.0 Standard Data Types

Standard data types represent (1) logical data (TRUE or FALSE), (2)
character, (3) integer and (4) real number. Issues about data types
are byte size and the range of values that they represent. The
following table presents the sizes of the standard data types as well
as their range of values.

1.0 Standard Data Types

Standard _ _ Memory Minimum Maximum

Data Type C-implementation Size Value Value
char 1 byte -128 127

Character unsigned char 1 byte 0 255
unsigned short 2 bytes 0 65,535

Integer (unsigned) unsigned int 4 bytes 0 4,294,967,295
unsigned long long 8 bytes 0 264 — 1
short 2 bytes -32,768 32,767

Integer (signed) int 4 bytes -2,147,483,648 2,147,483,647
long long 8 bytes -263 263 — 1
float 4 bytes 1.17549 x 1038 3.40282 x 1038

Real number double 8 bytes 2.22507 x 1038 1.79769 x 10308
long double 12 bytes - -

1.0 Standard Data Types

« As programmers, we should be aware of our choice of data type
when we want to represent any data. For example, if we want to
represent the number of books in a library we probably should use
unsigned int since there shouldn’t be any negative number of books.
Furthermore, the maximum number for wunsigned int is
4,294,967,295. This number should be large enough to represent
the number of books in any library. If we use unsigned char, certainly
the maximum number is not large enough to represent the number
of books (from 0 to 255 only). On the other hand, if we use unsigned
long long, the maximum number is too large for our application (264
— 1). Since unsigned int is only 4 bytes in size and unsigned long
long is 8 bytes in size, we have save 4 bytes of memory size by
choosing the unsigned int.

1.0 Standard Data Types

« Similarly, we have to decide which data types to use to represent
temperature, voltage, number of stars, our names, our ID number or
even the state of ON-OFF. Good choice of data type not only
represents the true information but also saves the computer
memory.

« C does not have specific logical data type to represent TRUE or
FALSE. In a C program, any nonzero value is treated as TRUE and
zero value as FALSE.

« Examples on how to declare data types (create variable and allocate
memory space) are given below.

1.0 Standard Data Types

char huruf = ‘B’;
byte memory space identifiesd as hyruf and stores the ASCII

short nilai = 255;

‘reserve a 2 byte of memory space identified as pilad and stores the value
double temperature = 3%.8754;

« Finally, to know the size of any variable, use the sizeof()operator
which returns the integer value giving the number of bytes of the
variable size. An example is given below.

1.0 Standard Data Types

S 7« In my PC, the console
output is shown below.

int main() -
{ B "CAUsers\Owner Desktoph Programming for EnginnersiProgram Examplesly
char a; Integer Standard Data [Type
short b; .
7 b i char:
int c; * short :
longlong 4d: oAl
Float e: e of long Lomg:
double £; feal Mumber Standard

long double g:;
printf("Integer Standard Data Type\n\n"): o
printf("Size of char:\t\t$d byte\n",sizeof(a)): - of g double:

h

printf("Size of short:\t\t3d bytes\n",sizeof (b)) Standard Data Type
printf("Size of int:\t\t%d bytes\n",sizeof(c)):;
printf("Size of long long:\t$d bytes\n",sizeof(d)): of veid:

printf("\nReal Number Standard Data Type\n\n"):;
printf("Size of float:\t\t$d bytes\n",sizeof(e)):
printf("Size of double:\t\t3$d bytes\n",sizeof (f)):
printf("Size of long double:\t%$d bytes\n",sizeof (qg)):
printf("\nVoid Standard Data Type\n\n"):

printf("Size of wvoid:\t\t$d byte\n",sizeof (void)):
return 0;

2.0 Console Input/Output

« The term console means the keyboard and the monitor. The
keyboard is the standard input device while the monitor is the
standard output device. The standard C function to input data from
the keyboard is the scanf()function whereas the standard C function
to output data to the monitor is the printf() function. Both functions
are included in the stdio.h header file.

* In using scanf() and printf() functions, we must specify the format
specifier. For examples, integer values are represented by %d, the
float values are represented by %f and the character values are
represented by %.c.

« One important issue in using the scanf() function is the address
operator (&). An example of inputting data from keyboard is given
below.

2.0 Console Input/Output

int a;
float b;
gcanf("%sd %f", ca, s&b):

* Notice that the scanf() function uses the address of operator (&) in
Its parameters. Failure to include the address operator will result in
error.

* One issue related to printf() function is the non-printing character.
For example, in order to represent the new line we use \n, the bell
sound we use \a and the tab space we use \t.

2.0 Console Input/Output

int a;
float b;
printf ("The wvalue of a ia ¥d\tThe wvalue of b ia £\n", a, b);

« There are many details of using the printf() and scanf() functions.
There is no need to memorize them. Just refer to any C
programming reference in case we need to use specific features of

printf() and scanf() functions.

el |

3.0 EXxpression

« By expression, we mean the operations on data that reduce to a
single value. The common expressions are the addition, subtraction,
multiplication and division.

« There are two parts of an expression: the operand and the
operators. For example, the expression (a * b), both variables “a”
and “b” are operands while the * is the operator (in this case, the
multiplication operator).

« There are six types of expressions: primary, postfix, unary, binary,
ternary, assignment and comma. The classification is based on how
many operands and how many operators are in the expressions.

3.0 EXxpression

« There are evaluated based upon precedence and associativity. In
general, use parenthesis to ensure that the expressions are clearly
intended. As an example,

Xx.=1a+ b ¥c;
x..=_ é_;;l;kc;; [l JilL S1de OL Lic aSSidgnncilt 15 StOoIed 11l Lic aflabltc X.

Several important operators are logical operators. Examples:

a && b
a ||l b
la

1

3.0 EXxpression

« Since every expression is evaluated to a single value, it can also
represent the logical value. If the value of an expression is nonzero
then it represents TRUE. Else, if the value is zero, it represents
FALSE.

« One important operator is the modulus operator. It gives the
remainder of a division between to integers. An example,
int a = 13;
int b = 5;
int c;
c=a % b;

« The following program illustrates the single values evaluated from
logical expressions.

3.0 EXxpression

$¢include <stdic.h>

int main()
{
int a = 5;
int b = 0;
PEMMCEY ke e e I\n"):
printf("\ta\tb\tExpression\t\tValue\n");
PR ke e e e T T T T T I\n");
printf("\t$d\t3$d\tNOT a\t\t\t%d\n",a,b, 'a):
printf ("\t$d\t3$d\tNOT b\t\t\t%d\n",a,b, !b):
printf("\t$d\tsd\ta OR b\t\t\t3d\n",a,b,allb):
printf("\t$d\t$d\ta AND b\t\t\tsd\t\n",a,b,ass b);
printf("\t$d\tsd\ta EQUAL b\t\t%d\n",a,b,a == b):
printf("\t$d\tsd\ta NOT EQUAL b\t\t%d\n",a,b,a != b);
printf("\t$d\t3$d\ta GREATER b\t\t%d\n",a,b,a> b):
printf("\t$d\t$d\ta LESS b\t\t$d\n",a,b,a< b):;
PEINCEY e e e e T I\n"):
return 0; -
} i "Chllsers\user\Deskiop\BHM2013 Programming for Engineers\Program Examples\Exp

Value

a

e aneTean

4.0 Selection Statements

« Selection statement is a statement that allows us to choose between
different “action” depending on the outcome of the “condition”. If the
condition is TRUE (nonzero), then do certain “action”. If the
condition is FALSE (zero) than do other “action”.

« The possible actions can either be two-way or multi-way actions. In
a two-way action, we only have two choices whereas in a multi-way
action, we have more than two choices.

« The two way-action is constructed using the if...else structure. For
example, if we want to determine whether a given number is positive
(including zero) or negative, we construct the following program.

4.0 Selection Statements

$include <stdio.h>

int main()

{
int a;
printf ("Please enter a number.\n");
scanf ("%d4d",sa);
if (a >= 0)
printf("\nPositive or zerc number.\n");
else printf("\nNegative number.\n"):;
return 0;
)

i " "C\Users\user\Desktop\BHM201

Please enter a numbhep.

Hi."_‘:l'-‘.'.l- ive number.

4.0 Selection Statements

int main()
{ B ° "Ch\Users\usenr\Desktop\EHMZ2013 Programming for Engineers\Program Exan
int choice;

: S - Welcom to UMP
printf ("Helcom to UMP\n"); Please enter your choice.
printf("Please enter your choice.\n"): 1. Faculty of Mechanical Engineering

: 5 ” ; ; : . . Faculty of Manufacturing Engineering
printf("l. Faculty of Mechanical Engineering\n"):; . Faculty of Electrical Engineering

printf("2. Faculty of Manufacturing Engineering\n"); EEERSCIINAAUNETEH LTS GENEE T RLTLS S LT
% Z v : & . Faculty of Civil Engineering

printf("3. Faculty cof Electrical Engineering\n"):;

printf("4. Faculty of Chemical Engineering\n"):;

printf("5. Faculty of Civil Engineering\n\n"):;

scanf ("$d", schoice);

printf("\nYour choice: ");

switch(choice)

{

Your choice: Faculty of Chemical Engineering

Process returned B (Bx8) execution time : 1.778 s
Press any key to continue.

case 1:

printf("Faculty of Mechanical Engineering\n"); break;
case Z:

printf("Faculty of Manufacturing Engineering\n"); break:;
case 3:

printf("Faculty of Electrical Engineering\n"); break;
case 4: printf("Faculty of Chemical Engineering\n"):; break;

case 5: printf("Faculty of Civil Engineering\n"); break:;
default: printf("None\n");

}

return 0;

5.0 Repetition Statement

« Repetition statement is used to repeat certain action while the
condition is TRUE (nonzero). If the condition becomes FALSE
(zero), the action stops.

« There are two kinds of looping (repetition),

1. Pre-testloop. Check the condition first and then carry the
repeat action until the condition is FALSE. In this case, we use
the for or while loop.

2. Post-test loop. Do the action first and then check until the
condition is FALSE. For this case, we use the do...while loop.

« Suppose that we want user to keep guessing our number until he or
she gets the correct number or quit, we can use the following
program. This is a pre-test loop.

5.0 Repetition Statement

$¢include <stdiec.h>

int main() « This is a case whereby the
{ - guess is correct.

int guess = 0;
int number = 5;
printf("Please guess a number from 0 to 9.\n To quit enter negative number.\n"):;

B "C:A\Users\user\Desktop\BHM2012 Programming for Engi.., ﬂﬂ
while ((guess != number) && (guess >= 0)) ! ess a number From B to 7.
[| i iumber.

L
scanf ("$d", sguess);
printf ("Your guess is $d\n",guess);

}
printf("Thank you for playing.\n"):;
return 0;
) eturned B (Bx execution time = 13.52% =
"res key to con 1

B 7 "C:\Users\user\Desktop\BHM2012 Programming for Engi... |5|M

P'lease guess a number from B to 9.

» negative number.

Your guess is 3
1
Your guess is 1

o « This is a case whereby the user
quit by entering the negative

i1 For playing.

returned B (@x@> execution time : h.
n.quﬂ:e_l_.l I::J continue . - I © number!

5.0 Repetition Statement

» For the post-test loop, the same program is modified by using the do
... While loop and is given below.

¢include <stdio.h>

int main()

{

printf("Please guess a number from 0 to 9.\nTo quit enter negative number.\n"):;
1 " "C\Users\user\Desktop\BHM2013 Programming for Enginee... @M

Please guess a number from @ to 9.
do To quit enter negative number.
1
{ Your guess 1is 1
ym ” \ -
SCénf\ ¥d", sguess); : Your guess ic 3
printf("Your guess is $d\n",guess); 3 ‘o ©
2 : = our guess 1S
}] while ((guess != number) && (guess >= 0)); Thank you for plaving.
S " - - - e "y .
printf("Thank you for playing.\n"); Process returned 8 <Bu@> execution time :
return 0: Press any key to continue.

5.0 Repetition Statement

« If we want a specific number of looping, it is better to use the for
loop structure as given by a program example below.

$include <stdio.h>

int main()

{ i | "C\Users\user\Desktop\BHM2013 Programming for Engineers\Program Examj
int guess = 0; 1
int number = 5;
printf ("Please enter three guess number from 0 to %.\n"):; "

{
scanf ("$d", sguess) ;
printf("\nYour guess number $d is $d\n",i+l,guess):;
}
printf ("\nThank you for playing.\n"):;
return 0;

&

« There is a special case called infinite loop whereby there is no
action inside the loop that causes the condition to become FALSE.
Be careful with infinite loop!

6.0 Function

« Functions are subprogram written to do a specific task. The purpose
IS to make program manageable and to be able to reuse the same
task.

« Function has two parts: function declaration and function
implementation. Function declaration consists of three parts: the
return value (the output of a function), the parameters (the input of a
function) and the name of the function.

« The number of inputs can be more than one but the output (the
return value) must be only one.

« Functions can be user-defined or from the C Library. Functions like
printf() and scanf() are from the “stdio.h” library.

« An example is given below.

6.0 Function

float get _mark():
char determine grade (double marck):
~oid show_result(double mark, char grade):
irt main()
[
float mark:
char grade:
mark = get_mark():
grade = determine grade(mark):
show_result (mark, grade):

returr O;

)

B "C\Users\user\Desktop\BHM2013 Programming for Engi... I&M

Please enter your mark.

float get mark()
{

floatmarkah: -

printf("Please enter your mark.\n"): 66.3

scanf ("3$£", smarkah);

returnmarkah: Your mark is 66.3. Thus vyour grade
]
char determine grade (double mark) Process returned 6 (BxA) execution time
e o Press any key to continue.

if (mark>%0) rzeturn ;

elze if (mark>30) zeturn

elze if (mark>70) return

elze if (mark>€0) zeturn 'I

elze zeturr 'F':
]

~oid show_result(double mark, char grade)

[
printf("\nY¥our mark is 13.1f. Thus your grade is %c.\n",mark,grade):
Teturn;

)

