For updated version, please click on http://ocw.ump.edu.my

THEORY OF STRUCTURES CHAPTER 2: DEFLECTION (MACAULAY METHOD) PART 1

by
Saffuan Wan Ahmad
Faculty of Civil Engineering & Earth Resources
saffuan@ump.edu.my

Chapter 2 : Part 1 – Macaulay Method

Aims

- Draw elastic curve for beam
- Write equation for bending moment
- Determine the deflection of statically determinate beam by using Double Integration Method.
- Write a single equation for bending moment.
- Determine the deflection of statically determinate beam by using Macaulay's Method.

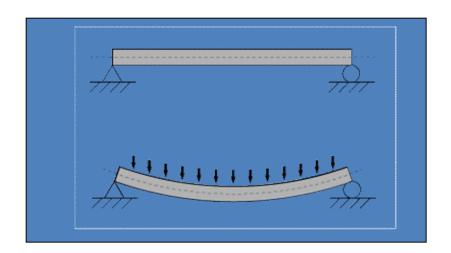
Expected Outcomes :

Able to analyze determinate beam – deflection and slope by Macaulay Method.

References

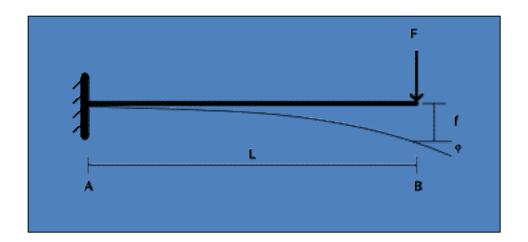
- Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, SI Edition by Aslam Kassimali, Cengage Learning
- Structural Analysis, Coates, Coatie and Kong
- Structural Analysis A Classical and Matrix Approach, Jack C. McCormac and James K. Nelson, Jr., 4th Edition, John Wiley

WHAT IS DEFLECTION????

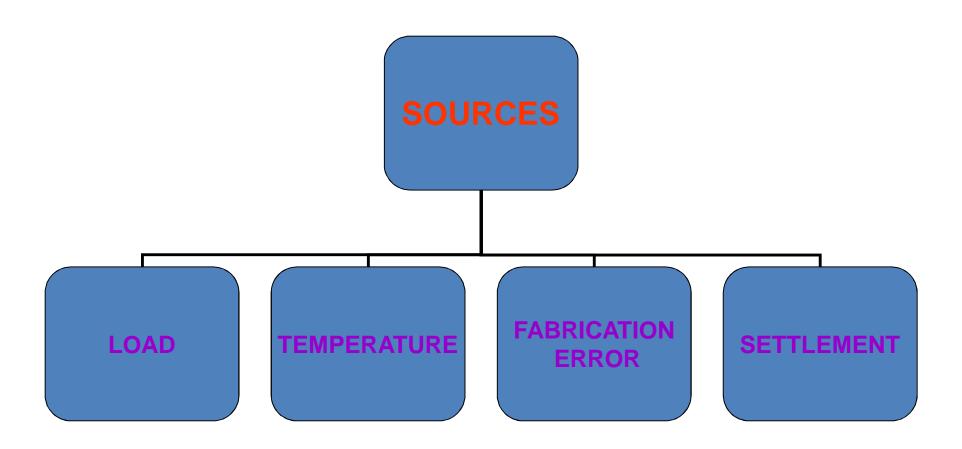


INTRODUCTION

• **deflection** is a term that is used to describe the degree to which a structural element is displaced under a load.



by Saffuan Wan Ahmad

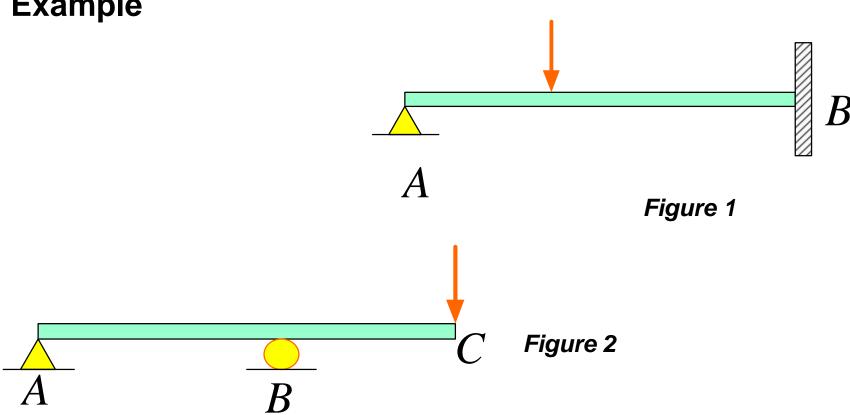


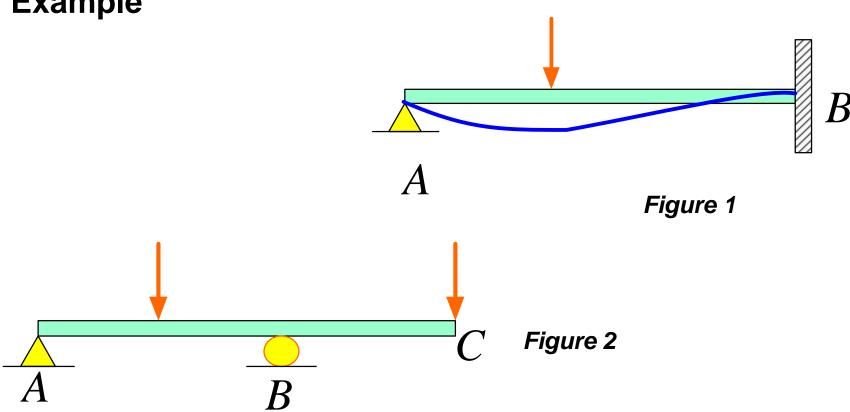
by Saffuan Wan Ahmad

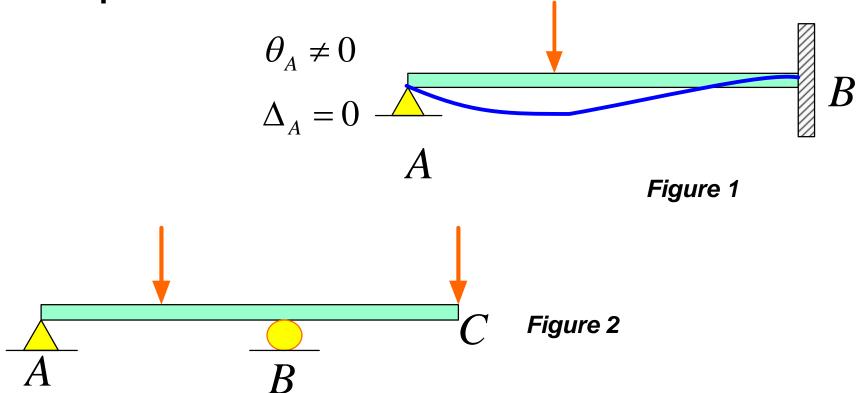
Communitising Technology

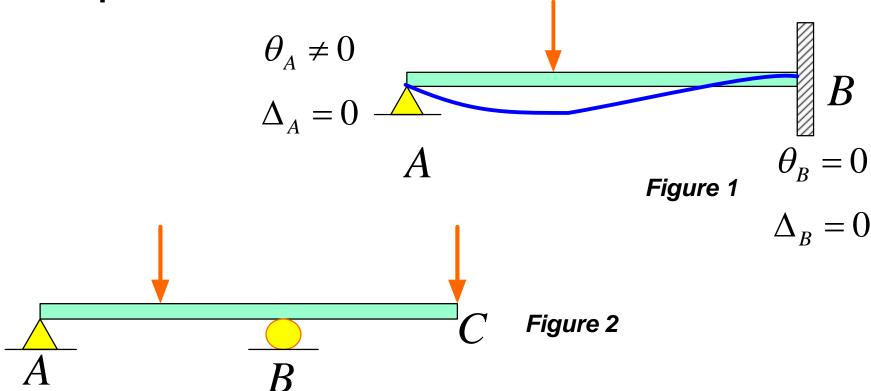
THE ELASTIC CURVE

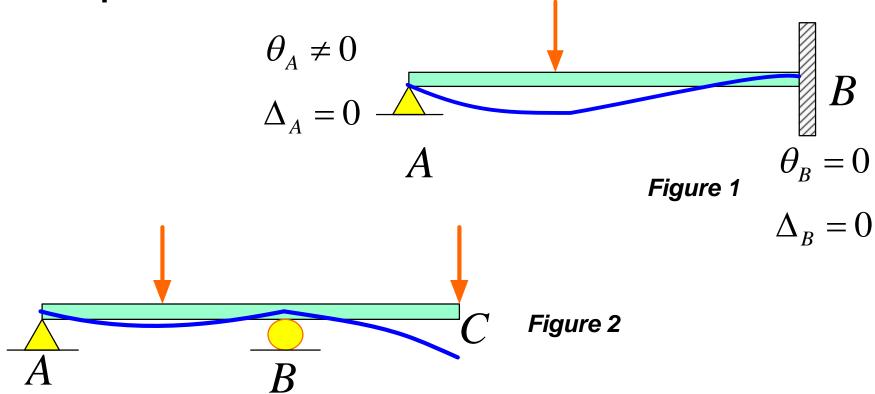
- -The deflection diagram of the longitudinal axis that passes through the centrfold of each cross-sectional area of the beam
- Support that resist a force, such as pinned, restrict displacement
- Support that resist a moment such as fixed, resist rotation or slope as well as displacement.

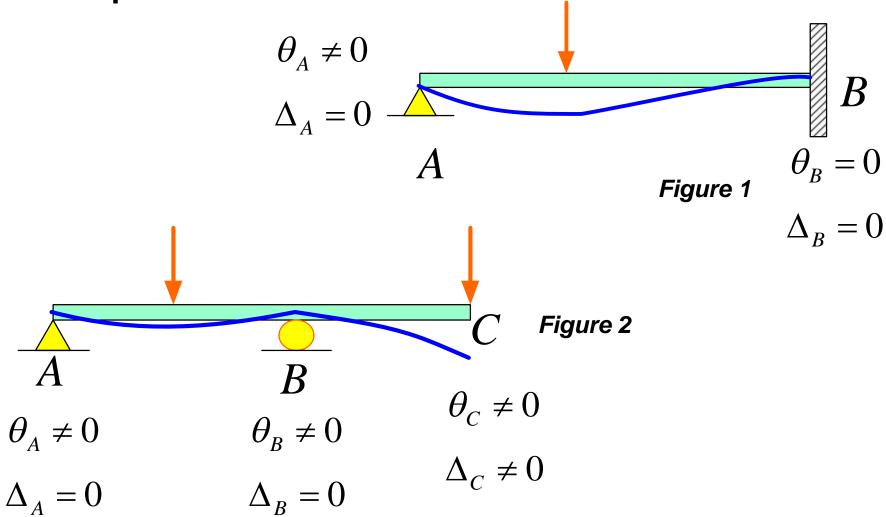




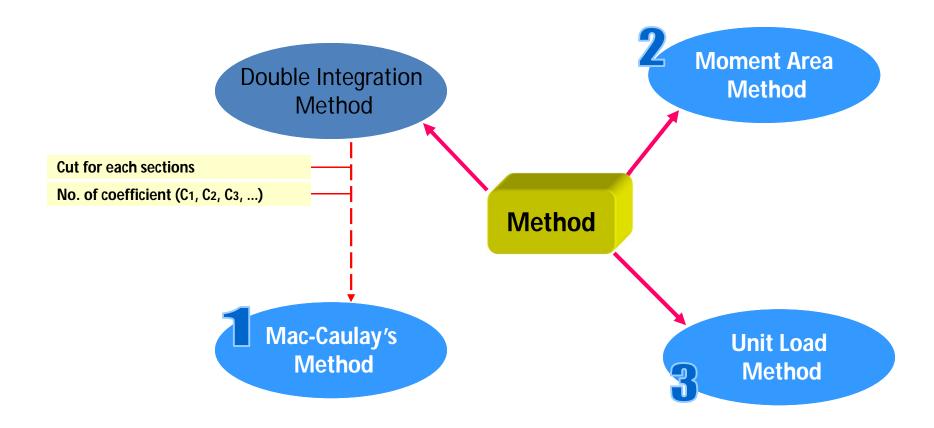








Three basic methods to find deflection for statically Malaysia determinate beams:



by Saffuan Wan Ahmad

EULER-BERNOULLI THEORY

- Also known as elastic-beam theory
- This theory form important differential equation that relate the internal moment in a beam to the displacement and slope of its elastic curve.
- This equation form the basis for the deflection methods.

$$\frac{d^2v}{dx^2} = \frac{M}{EI}$$

Equation 1

THE DOUBLE INTERGRATION METHOD

• Moment, M is known expressible as a function of position x, the successive integrations of Eq. 1 will yield the beam's slope, θ .

$$\theta = \frac{dv}{dx} = \int \frac{M}{EI} dx$$

And the equation of the elastic curve,
 v(displacement)

$$v = f(x) = \int \int \frac{M}{EI} dx$$

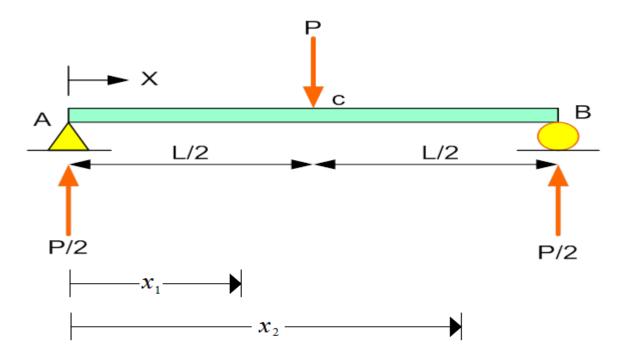
THE DOUBLE INTERGRATION METHOD

- This method depend on the loading of the beam.
- All function for moment must be written each valid within the region between discontinuities.
- Using equation 1 and the function for M, will give the slope and deflection for each region of the beam for which they are valid.

THE DOUBLE INTERGRATION METHOD

EXAMPLE

Consider a simply supported beam AB of length L and carrying concentrated load P at mid span, C as shown below. Use the double integration method. Find the equation of the elastic curve. El is constant.



- Function for the beam moment
- For span $0 < x_1 < L/2$

$$M_1 = \frac{P}{2}x_1$$

• For span $L/2 < x_2 < L$

$$M_{2} = \frac{P}{2}x_{2} - P(x_{2} - \frac{L}{2})$$

$$M_{2} = -\frac{P}{2}x_{2} + \frac{PL}{2}$$

Replace M₁ into slope and displacement integration.

$$\frac{d^2v}{dx^2} = \frac{\frac{P}{2}x_1}{EI}$$

$$\theta_1 EI = \frac{dv}{dx} = \int \frac{P}{2} x_1 dx$$

$$v_1 EI = f(x) = \int \int \frac{P}{2} x_1 dx$$

$$\theta_{1}EI = \int \frac{P}{2}x_{1} dx$$

$$\theta_{1}EI = \frac{Px_{1}^{2}}{4} + C_{1}$$
Then,
$$v_{1}EI = \int \frac{Px_{1}^{2}}{4} + C_{1} dx$$

$$v_{1}EI = \frac{Px_{1}^{3}}{12} + C_{1}x_{1} + C_{2}$$

Here we have 2 unknown C₁ and C₂

Replace M₂ into slope and displacement integration.

$$\frac{d^2v}{dx^2} = \frac{-\frac{P}{2}x_2 + \frac{PL}{2}}{EI}$$

$$\theta_2 EI = \frac{dv}{dx} = \int -\frac{P}{2}x_2 + \frac{PL}{2}dx$$

$$v_2EI = f(x) = \int \int -\frac{P}{2}x_2 + \frac{PL}{2}dx$$

$$\theta_{2}EI = \int -\frac{P}{2}x_{2} + \frac{PL}{2}dx$$

$$\theta_{2}EI = -\frac{P}{4}x_{2}^{2} + \frac{PL}{2}x_{2} + C_{3}$$

Then,

$$v_2EI = \int -\frac{P}{4}x_2^2 + \frac{PL}{2}x_2 + C_3dx$$

$$v_2EI = -\frac{P}{12}x_2^3 + \frac{PL}{4}x_2^2 + C_3x_2 + C_4$$

Here we have 2 unknown C₃and C₄

Using boundary conditions

$$-v_1=0, x_1=0$$

$$-v_2=0, x_2=\mathsf{L}$$

$$-x_1 = x_2 = \frac{L}{2}$$

•
$$v_1 = v_2$$

•
$$\theta_1 = \theta_2$$

• This will solve C₁, C₂, C₃ and C₄

Solving all the unknown, C_x , will give slope and displacement for the element.

- At the support
$$x_1 = 0$$
, $x_2 = L$
$$\theta_1 = \theta_2 = \pm \frac{PL^2}{16}$$

- At the mid span
$$x_1 = x_2 = \frac{L}{2}$$

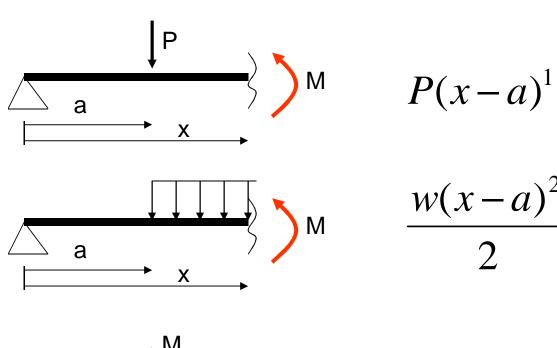
$$v_1 = v_2 = -\frac{PL^3}{48}$$

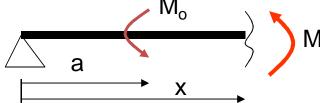
MACAULAY'S METHOD

- Mac-Caulay's method is a means to find the equation that describes the deflected shape of a beam
- From this equation, any deflection of interest can be found
- Mac-Caulay's method enables us to write a single equation for bending moment for the full length of the beam
- When coupled with the Euler-Bernoulli theory, we can then integrate the expression for bending moment to find the equation for deflection using the double integration method.
- Macauly's Method allow us to 'turn off' partial of moment function when the value inside a bracket in that function is zero or negative.

Macaulay's Method

In this method, the moment function only will be considered at end of the section

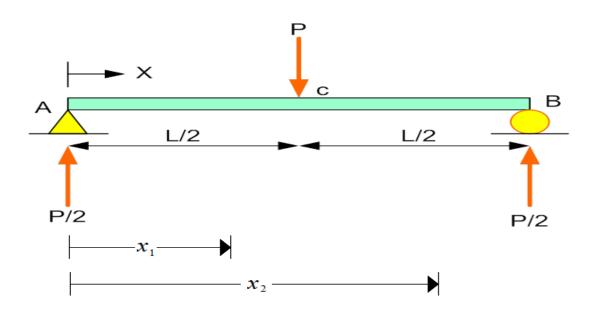




$$M_0(x-a)^0$$

Macauly's Method

Let us again consider a simply supported beam AB of length L and carrying concentrated load P at mid span, C as shown below. El is constant. This example are going to show how to find the equation of elastic curve for the beam by 'turn off' part of a function using Macauly's Method.



- Again we must write a function for the beam moment that can describe the moment for the beam wholly from the left side.
- This beam have 2 span. Macauly's Method will use the moment function to the very right with only *x* function as distance. Where here for example:
- Span L/2 < x < L

$$M = \frac{P}{2}x - P\left(x - \frac{L}{2}\right)$$

• Take note here Macauly's Method use a different bracket that have a special function that have an advanced understanding and application.

• Span L/2 < x < L

$$M = \frac{P}{2}x - P\left(x - \frac{L}{2}\right)$$

- The bracket above allow the function of 'turn off' when inside value is negative or zero.
- Means if we have $x \le \frac{L}{2}$ the $\left\langle x \frac{L}{2} \right\rangle$ will be zero
- Mathematically explained as:

$$\left\langle x - \frac{L}{2} \right\rangle = \begin{cases} 0, & x \leq \frac{L}{2} \\ x - \frac{L}{2}, & x > \frac{L}{2} \end{cases}$$

 Applying Euler-Bernoulli Theory replace M into slope and displacement integration.

$$EI\frac{d^2v}{dx^2} = \frac{P}{2}x - P\left(x - \frac{L}{2}\right)$$

$$\theta EI = \frac{dv}{dx} = \int \frac{P}{2}x - P\left(x - \frac{L}{2}\right)dx$$

$$vEI = f(x) = \int \int \frac{P}{2}x - P\left(x - \frac{L}{2}\right)dx$$

• From the slope integration :

$$\theta EI = \int \frac{P}{2}x - P\left(x - \frac{L}{2}\right)dx$$

$$\theta EI = \frac{P}{4}x^2 - \frac{P}{2}\left(x - \frac{L}{2}\right)^2 + C_1$$

• Take note here that $\left(x - \frac{L}{2}\right)$ is integrate as a function of x. This is rooted to advanced math that Macaulay use in his method that need to be remember.

From the displacement integration :

$$vEI = \int \int \frac{P}{2}x - P\left\langle x - \frac{L}{2} \right\rangle dx$$

$$vEI = \int \frac{P}{4}x^2 - \frac{P}{2}\left\langle x - \frac{L}{2}\right\rangle^2 + C_1 dx$$

$$vEI = \frac{P}{12}x^3 - \frac{P}{6}(x - \frac{L}{2})^3 + C_1x + C_2$$

• Again Ttke note here that $\left\langle x - \frac{L}{2} \right\rangle$ is integrate as a function of x.

 From slope and displacement integration procedure, 2 unknown were obtained and solved using the boundary condition:

$$- v = 0, x = 0$$
$$- v = 0, x = L$$

Please remember :

$$\left\langle x - \frac{L}{2} \right\rangle = \begin{cases} 0, & x \leq \frac{L}{2} \\ x - \frac{L}{2}, & x > \frac{L}{2} \end{cases}$$

Lets use the first boundary

$$-v = 0, x = 0$$

$$0EI = \frac{P}{12}0^3 - \frac{P}{6}\left(0 - \frac{L}{2}\right)^3 + C_10 + C_2$$

• Inside the bracket $\left\langle x - \frac{L}{2} \right\rangle = -\frac{L}{2} = 0$ $0EI = \frac{P}{12}0^3 - 0 + C_10 + C_2$

$$C_2 = 0$$

The second boundary

$$-v = 0$$
, $x = L$ and $C_2 = 0$

$$0EI = \frac{P}{12}L^3 - \frac{P}{6}(L - \frac{L}{2})^3 + C_1L$$

• Inside the bracket $\left\langle L - \frac{L}{2} \right\rangle = \frac{L}{2}$ we use the value

$$C_1 = -\frac{3PL^2}{48}$$

Using unknown:

$$-C_{1} = -\frac{^{3PL^{2}}}{^{48}} \text{ and } C_{2} = 0$$

$$\theta EI = \frac{P}{4}x^{2} - \frac{P}{2}\left(x - \frac{L}{2}\right)^{2} - \frac{^{3PL^{2}}}{^{48}}$$

$$vEI = \frac{P}{12}x^3 - \frac{P}{6}(x - \frac{L}{2})^3 - \frac{3PL^2}{48}x$$

 This equation can be use to obtain deflection and displacement at any position of the beam following 'turn off' rule.

• Lets determine slope at the support :

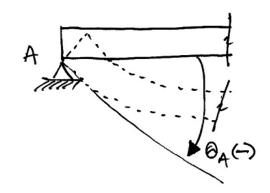
$$- At x = 0$$

$$\theta EI = \frac{P}{4}0^2 - \frac{P}{2}\left(0 - \frac{L}{2}\right)^2 - \frac{3PL^2}{48}$$

• Inside the bracket $\left\langle x - \frac{L}{2} \right\rangle = -\frac{L}{2} = 0$

$$\theta EI = -\frac{3PL^2}{48}$$

$$\theta = -\frac{PL^2}{PL^2}$$



Lets determine slope at the support :

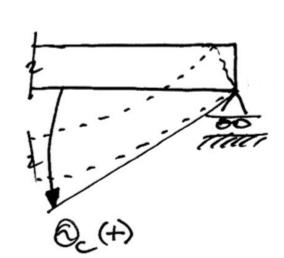
$$- At x = L$$

$$\theta EI = \frac{P}{4}L^2 - \frac{P}{2}\left\langle L - \frac{L}{2} \right\rangle^2 - \frac{3PL^2}{48}$$

• Inside the bracket
$$\left\langle x - \frac{L}{2} \right\rangle = \frac{L}{2}$$

$$\theta EI = \frac{3PL^2}{48}$$

$$\theta = + \frac{PL^2}{16FI}$$



Lets determine maximum displacement at the midspan :

- At
$$x = \frac{L}{2}$$

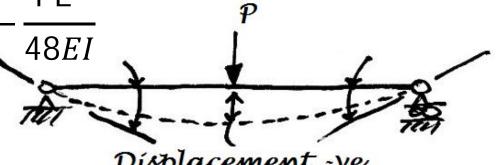
$$vEI = \frac{P}{12} \left(\frac{L}{2}\right)^3 - \frac{P}{6} \left(\frac{L}{2} - \frac{L}{2}\right)^3 - \frac{3PL^2}{48} \left(\frac{L}{2}\right)$$

• Inside the bracket $\left\langle x - \frac{L}{2} \right\rangle = 0$

$$vEI = -\frac{PL^3}{48}$$

$$v = -\frac{PL}{48EI}$$

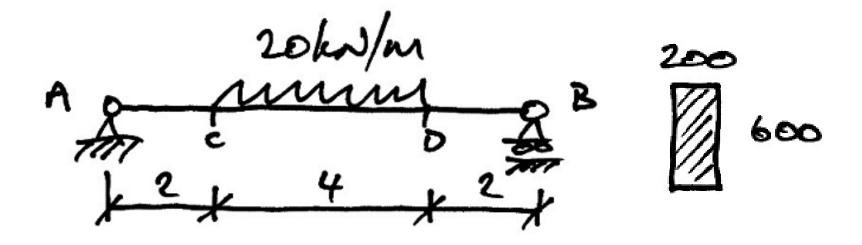
Negative means downward



Displacement -ve

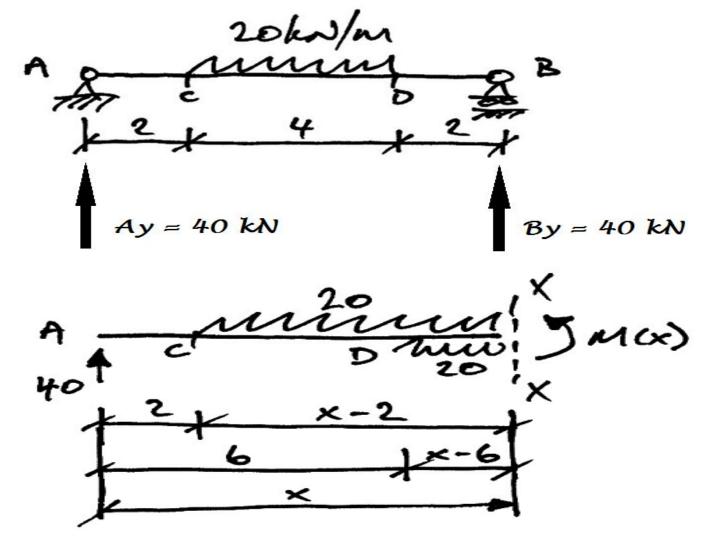
Macauly's Method

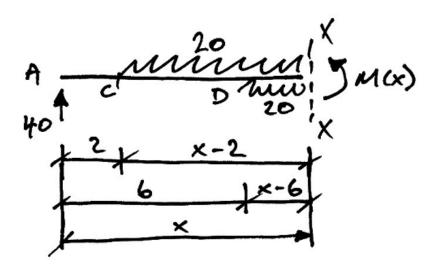
In this example we take a beam with the UDL of 20 kN/m applied to the centre of the beam as shown. The beam has the materials property, E = 30 kN/mm² and a cross section in mm as shown. Determine the maximum displacement in the beam



$$I = \frac{bd^3}{12} = \frac{200 \cdot 600^3}{12} = 36 \times 10^8 \text{ mm}^4$$

$$EI = \frac{(30)(36 \times 10^8)}{10^6} = 108 \times 10^3 \text{ kNm}^2$$





Taking moments about the cut, we have:

$$M(x) - 40x + \frac{20}{2}[x - 2]^2 - \frac{20}{2}[x - 6]^2 = 0$$

Again the Macaulay brackets (take note here
 () = []) have been used to indicate when terms should become zero. Hence:

$$M(x) = 40x - \frac{20}{2}[x-2]^2 + \frac{20}{2}[x-6]^2$$

• Applying Euler-Bernoulli (v = y):

$$M(x) = EI \frac{d^2y}{dx^2} = 40x - \frac{20}{2}[x-2]^2 + \frac{20}{2}[x-6]^2$$
 Equation 1

 Integrate Equation 1 to get the slope equation

$$EI\frac{dy}{dx} = \frac{40}{2}x^2 - \frac{20}{6}[x-2]^3 + \frac{20}{6}[x-6]^3 + C_{\theta}$$

Equation 2

Integrate Equation 2 to get the displacement equation

$$EIy = \frac{40}{6}x^3 - \frac{20}{24}[x-2]^4 + \frac{20}{24}[x-6]^4 + C_{\theta}x + C_{\delta}$$

Equation 3

The boundary conditions are:

- Support A: y = 0 at x = 0

- Support B: y = 0 at x = 8

So for the first boundary condition:

$$EI(0) = \frac{40}{6}(0)^{3} - \frac{20}{24}[0<2]^{4} + \frac{20}{24}[0<6]^{4} + C_{\theta}(0) + C_{\delta}$$

$$C_{\delta} = 0$$

For the second boundary condition:

$$EI(0) = \frac{40}{6}(8)^3 - \frac{20}{24}(6)^4 + \frac{20}{24}(2)^4 + 8C_{\theta}$$

$$C_{\theta} = -293.33$$

 Insert constants into Equations 3 (displacement)

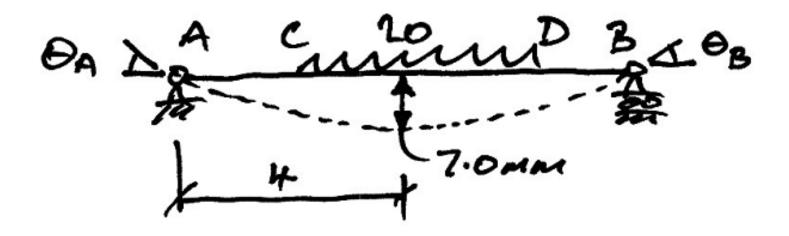
$$EIy = \frac{40}{6}x^3 - \frac{20}{24}[x-2]^4 + \frac{20}{24}[x-6]^4 - 293.33x$$

$$EI\delta_{\text{max}} = \frac{40}{6} (4)^3 - \frac{20}{24} (2)^4 + \frac{20}{24} [4 < 6]^4 - 293.33(4)$$
$$= -760$$

$$\delta_{\text{max}} = \frac{-760}{EI} = \frac{-760}{108 \times 20^3} = -0.00704 \text{ m}$$

 $\delta_{\text{max}} = -7.04 \text{ mm}$

 This is therefore a downward deflection as expected.



oy Saffuan Wan Ahmac

THANKS

Author Information

Mohd Arif Bin Sulaiman Mohd Faizal Bin Md. Jaafar Mohammad Amirulkhairi Bin Zubir Rokiah Binti Othman Norhaiza Binti Ghazali Shariza Binti Mat Aris

