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Content Overview

v"What is Polymorphism in programming?
v"Why we use Polymorphism?

v Types of Polymorphism in Java
» Overloading
» Overriding

v'"When we use Polymorphism?




Learning Objective

» To understand

» To differentiate between member method and
constructor method overloading

» To write method overloading




WHAT IS POLYMORPHISM? Ui

POLY MORPHISM ?

/

Many Form

» Has the ability to appear in many shapes.
» In 00
= The ability of objects of different types to
respond to functions of the same name
= The user does not have to know the exact
type of the object in advance
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WHAT IS THE SAME CONCEPT THAT
A AND B SHARE?

On/Off Switch
BUT

Internally, how the on/off switch is totally different

When 2 same-named item (on/off

POLYMORPH'SM switches) performing the same task

(turning something on or off), despite
being very different internally




WHY USE POLYMORPHISM? Ui

| 1 Help programmers to write code that is easy to modify and extend

!

1 2, Allows a basic class variable to refer to objects from different subclasses
1 in the same inheritance hierarchy



WHY USE POLYMORPHISM? Vi
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| 3 Allows programmers to send the same message (or call the same
| function) for object from different classes.
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OVERRIDING OVERLOADING

** When a method that has already ** When two methods were defined
been defined in a parent class is with the same name, in the same
redefined using the exact same class, distinguished by their
signature. signature.

s Classes that methods appear in +* Classes that methods appear in do
MUST be in parent/child NOT have to be in parent/child
relationship relationship

* Signatures MUST match s Signatures MUST NOT match

» Methods SOMETIMES COMBINED ** Methods are SEPARATE
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EXAMPLE OF POLYMORPHISM | e

class Student { Class GradStudent extends Student {
public void Write (int ID, int Grad, public void Write (int ID, int Grad,
String Fname, String Lname) { String Fname, String Lname, int
m_ID = ID: yrGrad, String unSch, String major) {
m_Graduation = Grad; super.Write (ID, Fname, Lname, Grad);
m_First = Fname; m_UndergradSchool = unSch;
m_Last = Lhame; m_Major = major;
} YearGraduated = yrGrad;
public void Display () { }
System. Qut.printin (“Student: “ + public void Display () {
m_ID + " " + m_First + “" + m_Last + super.Display ();
"Graduated : “ + m_Graduation); System.out.printin ("Graduated: “ +
} m_Graduation + " " +
private int m_ID, m_Graduation; m_UndergradSchool + “* + m_Major +“
private String m_First; " + YearGraduated);
private String m_Last; }
} private YearGraduated,;
private String_m_UndergradSchool,
m_Major;



OVERLOADING METHODS U

| 1 When several methods with the same name exist within a class |

| !

: 2. But MUST have different formal parameter list (method signature)

' |

. 3, Both member and constructor methods can be overloaded

!

: 4.Two methods are said to have different formal parameter lists:

: . if both methods have different number of formal parameters.

|

b. If the number of formal parameters is the same in both methods,

the data type of the formal parameters in the order we list must
differ in at least one position.
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Instance of the Student class ¥ = AR

public static void Display ( Studefit s) {

! s.Display ( ); |
'} l
! !
! public static void Display (GradStudent g) { ,
: g.Display ( ); :
.

Instance of the GradStudent class



POLYMORPHISM: BENEFITS Ui

! 1. It gives programmers the ability to develop interfaces for complex
application

WHAT IS INTERFACE?

AN INTERFACE? LAY

This topic will be discuss further in the Next Chapter....



EXAMPLE :

public
public
public

public

int determineResult

int determineResult

int determineResult

int determineResult

(int studentMark)
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(int idMatric, int studentMark)

(String idMatric,

int studentMark)
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Student Class J» Overloaded
public String determineBesult (double mark) Member
{ Methods

if (mark > 39)
result = “PASS”;
else
result = “FAIL";
return result;

}

public String determineResult (double mark, double passingMark)
{

1f (mark > passingMark)
result = “PASS”;
else
result = “FAIL";
return result;



EXAMPLE : cientclass V Mialaysia
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package student;
Import java.util.*;
public class membOver |
public static wvoid main (String [ ] args)
i
double studMark, passMark;
Scanner read = new Scanner (System.in);
Student UnderGradStud=new Student (“Zminah®”, 01189);
System.out.println (“Name: " +UnderGradsStud.name);
System.out.println (“Matric No: “+UnderGradsStud.idMatric):;
System.out.print (“Enter Student’s Mark: “):
studMark = read.nextDouble ()
System.out.println (“Result: “+UnderGradStud.determineResult (studMark)):
System.out.println(};

Student PostGradStud=new Student (“Zmmar”, 01982);

System.out.println (“2nd Constructor:”);

System.out.println (“Name: ” +PostGradStud.name);

System.out.println (“Matric No: “+PostGradStud.idMatric);

System.out.print (“Enter Student’s Mark: “);

studMark = read.nextDouble (),

System.out.print (“Enter student’s passing mark: V),

passMark = read.nextDouble ();

System.out.println (“Result: ~
+PostGradStud.determineResult (studMark, passMark) ) ;

Invoke different member methods in Student class
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Output:

run:

Name: Aminah

Matric No: 01189

Enter student’s mark: 40
Result: PASS

Name: Ammar

Matric No: 01982

Enter student’s mark: 40

Enter student’s passing mark: 50

Result: FAIL

BUILD SUCCESSFUL (total time: 12 seconds)

Communitising Technology



CONSTRUCTOR METHOD OVERLOADING  {Jis::

ol

| 1 Constructor Overloading :- When a class have more than one constructors !
! |
| 1 2., Properties of Constructor Method: !
: (. Same name with a class name |
: !
: b.A constructors are automatically executed when a class object is !
: instantiated !

C. The different constructor is executed based on the type of value :
passed to the constructor during object instantiation. |
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package student;
public class Student

{

public String name; Overloaded
public int idMatric; ; Constructor
public String result; Methods

public Student (String studentName, int matricNo)
{

name = studentName;

idMatric = matricNo;

result = “unknown”;:

}
public Student (String studentName, int matricNo, double mark)

{

name = studentName:;
idMatric = matricNo;
result = determineGrade (mark):
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Client Class

package student:
public class constMethod

{

public static void main (String [ ] args)

{

Student UnderGradstud=new Student (“Aminah”, 01189);
System.out.println (“1st Constructor:”):;
System.out.println (“Name: “” +UnderGradsStud.name);
System.out.println (“Matric No: “+UnderGradStud.idMatric):
System.out.println (“Result: “+UnderGradstud.result);

Student PostGradStud=new Student (“Ammar”, 01982):
System.out.println (“2Znd Constructor:”);
System.out.println (“Name: “ +PostGradStud.name) ;
System.out.println (“Matric No: "+PostGradStud.idMatric):;
System.out.println (“Result: “+PostGradsStud.result);

Invoke different constructor methods in Student class
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Output:

run:
lst Constructor:

Name: Aminah

Matric No: 01189

Result: unknown

2nd Constructor:

Name: Ammar

Matric No: 01982

Result: PASS

BUILD SUCCESSFUL (total time: 0 seconds)

RESU L7?
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OVERRIDING METHODS

Revise Lecture note on Week 6 : Inheritance
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INHERITANCE : Constructor | Q PAHANG
——————————————————————————————————

/ Used super keyword to refer to the parent class and often used to invoke the
parent’s constructor

/A child’s constructor is responsible for calling the parent’s constructor

/To call the parent’s constructor — the first line of child’s constructor can be the
super keyword.

/The super keyword can also be used to reference other variables and method
defined in the parent’s class

super ( );

Used to call the constructor from superclass (parents) with appropriate
arguments
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/ A child class can override the definition of an inherited method in favor of its own.

/ The new method must have the SAME SIGNATURE (name and parameters) as the
parent’s method BUT can have a DIFFERENT BODY (implementation

/The type of the object executing the method determines which version of the
method is invoked

super ( );

/ Invoked explicitly the parents method using super reference.

/ Method with £ inal modifier, cannot be overridden.

/Shadowing variables is when an overriding concept applied to data and should be
avoided — cause unnecessarily confusing code.
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Superclass (Parent)

class student

{
int power;
public void setPower (int Power)

}

Sub-class (Child)

class GradStud extends Student
{

int power;

Public void setPower (int Power);
int matricNo;

J
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