Universiti
Malaysia
PAHANG

OBJECT ORIENTED PROGRAMMING
Polymorphism

Y
Dr. Nor Saradatul Akmar Zulkifli
Faculty of Computer Systems & Software Engineering
saradatulakmar@ump.edu.my

0 @ e OER Object Oriented Programming by Dr. Nor Saradatul Akmar Binti Zulkifli work is under licensed

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Communitising Technology



http://creativecommons.org/licenses/by-nc-nd/4.0/

Content Overview

v"What is Polymorphism in programming?
v"Why we use Polymorphism?

v Types of Polymorphism in Java
» Overloading
» Overriding

v'"When we use Polymorphism?




Learning Objective

» To understand

» To differentiate between member method and
constructor method overloading

» To write method overloading




WHAT IS POLYMORPHISM? Ui

POLY MORPHISM ?

/

Many Form

» Has the ability to appear in many shapes.
» In 00
= The ability of objects of different types to
respond to functions of the same name
= The user does not have to know the exact
type of the object in advance

Communitising Technology



WHAT IS THE SAME CONCEPT THAT
A AND B SHARE?

On/Off Switch
BUT

Internally, how the on/off switch is totally different

When 2 same-named item (on/off

POLYMORPH'SM switches) performing the same task

(turning something on or off), despite
being very different internally




WHY USE POLYMORPHISM? Ui

| 1 Help programmers to write code that is easy to modify and extend

!

1 2, Allows a basic class variable to refer to objects from different subclasses
1 in the same inheritance hierarchy



WHY USE POLYMORPHISM? Vi

" oEEm E EEE B EEE N B B B B R B B EEE N EEN R BN F EEN F EEE R EEE N EEE N EEN R N R M F EEE R EEE R EEm N Em R Em  Em s oy

| 3 Allows programmers to send the same message (or call the same
| function) for object from different classes.

Communitising Technology



7 ~l Universiti
Malaysia
H PAHANG

OVERRIDING OVERLOADING

** When a method that has already ** When two methods were defined
been defined in a parent class is with the same name, in the same
redefined using the exact same class, distinguished by their
signature. signature.

s Classes that methods appear in +* Classes that methods appear in do
MUST be in parent/child NOT have to be in parent/child
relationship relationship

* Signatures MUST match s Signatures MUST NOT match

» Methods SOMETIMES COMBINED ** Methods are SEPARATE

Communitising Technology



EXAMPLE OF POLYMORPHISM | e

class Student { Class GradStudent extends Student {
public void Write (int ID, int Grad, public void Write (int ID, int Grad,
String Fname, String Lname) { String Fname, String Lname, int
m_ID = ID: yrGrad, String unSch, String major) {
m_Graduation = Grad; super.Write (ID, Fname, Lname, Grad);
m_First = Fname; m_UndergradSchool = unSch;
m_Last = Lhame; m_Major = major;
} YearGraduated = yrGrad;
public void Display () { }
System. Qut.printin (“Student: “ + public void Display () {
m_ID + " " + m_First + “" + m_Last + super.Display ();
"Graduated : “ + m_Graduation); System.out.printin ("Graduated: “ +
} m_Graduation + " " +
private int m_ID, m_Graduation; m_UndergradSchool + “* + m_Major +“
private String m_First; " + YearGraduated);
private String m_Last; }
} private YearGraduated,;
private String_m_UndergradSchool,
m_Major;



OVERLOADING METHODS U

| 1 When several methods with the same name exist within a class |

| !

: 2. But MUST have different formal parameter list (method signature)

' |

. 3, Both member and constructor methods can be overloaded

!

: 4.Two methods are said to have different formal parameter lists:

: . if both methods have different number of formal parameters.

|

b. If the number of formal parameters is the same in both methods,

the data type of the formal parameters in the order we list must
differ in at least one position.



Universiti
Ui
Instance of the Student class ¥ = AR

public static void Display ( Studefit s) {

! s.Display ( ); |
'} l
! !
! public static void Display (GradStudent g) { ,
: g.Display ( ); :
.

Instance of the GradStudent class



POLYMORPHISM: BENEFITS Ui

! 1. It gives programmers the ability to develop interfaces for complex
application

WHAT IS INTERFACE?

AN INTERFACE? LAY

This topic will be discuss further in the Next Chapter....



EXAMPLE :

public
public
public

public

int determineResult

int determineResult

int determineResult

int determineResult

(int studentMark)

- Universiti
Malaysia
PAHANG

(int idMatric, int studentMark)

(String idMatric,

int studentMark)

Communitising Technology



Engnesning + Technology + Creamwity

. Universiti
Malaysia
® PAHANG

Student Class J» Overloaded
public String determineBesult (double mark) Member
{ Methods

if (mark > 39)
result = “PASS”;
else
result = “FAIL";
return result;

}

public String determineResult (double mark, double passingMark)
{

1f (mark > passingMark)
result = “PASS”;
else
result = “FAIL";
return result;



EXAMPLE : cientclass V Mialaysia
PAHANG
package student;
Import java.util.*;
public class membOver |
public static wvoid main (String [ ] args)
i
double studMark, passMark;
Scanner read = new Scanner (System.in);
Student UnderGradStud=new Student (“Zminah®”, 01189);
System.out.println (“Name: " +UnderGradsStud.name);
System.out.println (“Matric No: “+UnderGradsStud.idMatric):;
System.out.print (“Enter Student’s Mark: “):
studMark = read.nextDouble ()
System.out.println (“Result: “+UnderGradStud.determineResult (studMark)):
System.out.println(};

Student PostGradStud=new Student (“Zmmar”, 01982);

System.out.println (“2nd Constructor:”);

System.out.println (“Name: ” +PostGradStud.name);

System.out.println (“Matric No: “+PostGradStud.idMatric);

System.out.print (“Enter Student’s Mark: “);

studMark = read.nextDouble (),

System.out.print (“Enter student’s passing mark: V),

passMark = read.nextDouble ();

System.out.println (“Result: ~
+PostGradStud.determineResult (studMark, passMark) ) ;

Invoke different member methods in Student class

Communitising Technology



® Universiti
Malaysia
¢ PAHANG

Engnesning + Technology + Creamwity

Output:

run:

Name: Aminah

Matric No: 01189

Enter student’s mark: 40
Result: PASS

Name: Ammar

Matric No: 01982

Enter student’s mark: 40

Enter student’s passing mark: 50

Result: FAIL

BUILD SUCCESSFUL (total time: 12 seconds)

Communitising Technology



CONSTRUCTOR METHOD OVERLOADING  {Jis::

ol

| 1 Constructor Overloading :- When a class have more than one constructors !
! |
| 1 2., Properties of Constructor Method: !
: (. Same name with a class name |
: !
: b.A constructors are automatically executed when a class object is !
: instantiated !

C. The different constructor is executed based on the type of value :
passed to the constructor during object instantiation. |



EXAMPLE :
Malaysia
® PAHANG

mmmmmmm + Technology + Creatvity

package student;
public class Student

{

public String name; Overloaded
public int idMatric; ; Constructor
public String result; Methods

public Student (String studentName, int matricNo)
{

name = studentName;

idMatric = matricNo;

result = “unknown”;:

}
public Student (String studentName, int matricNo, double mark)

{

name = studentName:;
idMatric = matricNo;
result = determineGrade (mark):



EXAMPLE : e
Malaysia
® PAHANG

mmmmmmm + Technology + Creatvity

Client Class

package student:
public class constMethod

{

public static void main (String [ ] args)

{

Student UnderGradstud=new Student (“Aminah”, 01189);
System.out.println (“1st Constructor:”):;
System.out.println (“Name: “” +UnderGradsStud.name);
System.out.println (“Matric No: “+UnderGradStud.idMatric):
System.out.println (“Result: “+UnderGradstud.result);

Student PostGradStud=new Student (“Ammar”, 01982):
System.out.println (“2Znd Constructor:”);
System.out.println (“Name: “ +PostGradStud.name) ;
System.out.println (“Matric No: "+PostGradStud.idMatric):;
System.out.println (“Result: “+PostGradsStud.result);

Invoke different constructor methods in Student class



® Universiti
Malaysia
¢ PAHANG

Engnesning + Technology + Creamwity

Output:

run:
lst Constructor:

Name: Aminah

Matric No: 01189

Result: unknown

2nd Constructor:

Name: Ammar

Matric No: 01982

Result: PASS

BUILD SUCCESSFUL (total time: 0 seconds)

RESU L7?

Communitising Technology



~l Universiti
Malaysia
PAHANG

OVERRIDING METHODS

Revise Lecture note on Week 6 : Inheritance

Communitising Technology



Universiti

Malaysia

INHERITANCE : Constructor | Q PAHANG
——————————————————————————————————

/ Used super keyword to refer to the parent class and often used to invoke the
parent’s constructor

/A child’s constructor is responsible for calling the parent’s constructor

/To call the parent’s constructor — the first line of child’s constructor can be the
super keyword.

/The super keyword can also be used to reference other variables and method
defined in the parent’s class

super ( );

Used to call the constructor from superclass (parents) with appropriate
arguments



B Universiti
- - Malaysia
INHERITANCE : Overrldmg Methods QPAHXNG

/ A child class can override the definition of an inherited method in favor of its own.

/ The new method must have the SAME SIGNATURE (name and parameters) as the
parent’s method BUT can have a DIFFERENT BODY (implementation

/The type of the object executing the method determines which version of the
method is invoked

super ( );

/ Invoked explicitly the parents method using super reference.

/ Method with £ inal modifier, cannot be overridden.

/Shadowing variables is when an overriding concept applied to data and should be
avoided — cause unnecessarily confusing code.



Univers_iti
- - Malaysia
] ; PAHANG

ngnesning + Technology + Creamwity

Superclass (Parent)

class student

{
int power;
public void setPower (int Power)

}

Sub-class (Child)

class GradStud extends Student
{

int power;

Public void setPower (int Power);
int matricNo;

J




‘I Universiti
Malaysia
PAHANG

Author Information

Dr. Nor Saradatul Akmar Binti Zulkifli

Senior Lecturer
Faculty of Computer Systems & Software Engineering
Universiti Malaysia Pahang




