

BCN1043

COMPUTER ARCHITECTURE & ORGANIZATION

By Dr. Mritha Ramalingam

Faculty of Computer Systems & Software Engineering

mritha@ump.edu.my

AUTHORS

- Dr. Mohd Nizam Mohmad Kahar (mnizam@ump.edu.my)
- Jamaludin Sallim (jamal@ump.edu.my)
- Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)
- Dr. Mritha Ramalingam (mritha@ump.edu.my)

Faculty of Computer Systems & Software Engineering

BCN1043

COMPUTER ARCHITECTURE & ORGANIZATION

Chapter 3 continues...

SIMPLIFICATION

Simplification of Boolean function

- Reducing to lesser number of Boolean literals
- for least cost implementation
- Karnaugh Map (K-map) is a tabular method to reduce Boolean expressions.

SIMPLIFICATION: KARNAUGH MAP

K-map Terminology

- K-map is a tabular method derived from output values of Boolean function.
- minterm is a product term with all possible combinations of input variables
- E.g
- minterms of an expression with inputs x and y:

$$\bar{x}\bar{y},\bar{x}y,x\bar{y}$$
, and xy

Minterm	x	Y
ΣŢ	0	0
ХХ	0	1
χŢ	1	0
XY	1	1

 Minterms with three inputs

Minterm	x	Y	Z
Z Z	0	0	0
ΧŸZ	0	0	1
ΧΥZ	0	1	0
\(\bar{Z}\) \(\bar{Z}\)	0	1	1
$x\overline{y}\overline{z}$	1	0	0
ΧŸΖ	1	0	1
ΧΥZ̄	1	1	0
XYZ	1	1	1

K-map

- K-map is referred as a cell for each minterm.
- truth table and k-map of function F(x,y) = xy is shown below

K-map

- E.g.2, F(x,y) = x + y
- Similar to OR gate

$$F(x,y) = x + y = \overline{x}y + x\overline{y} + xy$$

$$F(x,y) = x + y$$

Kmap Simplification for Two Variables

rules for simplification:

- Group can contain only 1s; no 0s.
- Groups can occur only at right angles; no diagonal groups.
- In a group, number of 1s must be a power of 2
- Groups need to be as large as possible.
- Groups can overlap and wrap around the sides of the Kmap.

• E.g:

$$F(X,Y) = \overline{X}\overline{Y}Z + \overline{X}YZ + X\overline{Y}Z + XYZ$$

What could be the largest group of 1s?

X	Z 00	01	11	10
0	0	1	1	0
1	0	1	1	0

3-variable K-map Simplification riables

• Simplified Boolean function, F(x) = z.

$$F(X,Y) = \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ}$$

• E.g:

$$F(X,Y,Z) = \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}YZ + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z}$$

X	Z 00	01	11	10
0	1	1	1	1
1	1	0	0	1

E.g of side wrapping groups.

• Simplified function is: $F(X,Y,Z) = \overline{X} + \overline{Z}$

• With four variables, k-map can use 16 minterms

$$F(W,X,Y,Z) = \overline{WXYZ} + \overline{WXYZ} + \overline{WXYZ}$$
$$+ \overline{WXYZ} + W\overline{XYZ} + W\overline{XYZ} + W\overline{XYZ} + W\overline{XYZ}$$

Y WX	Z 00	01	11	10
0.0	1	1		1
01				1
11				
10	1	1		1

- three groups
- So we will have three terms in simplified function:

$$F(W,X,Y,Z) = \overline{WY} + \overline{XZ} + \overline{WYZ}$$

• E.g of group formation

- a circuit is designed in such a way that any particular input sets will never happen- don't care condition.
- Used while grouping for simplification

Denoted by X of "d" in the K-map cell

• E.g:

$$F(W,X,Y,Z) = \overline{WY} + YZ$$

• E.g:

$$F(W,X,Y,Z) = \overline{WZ} + YZ$$

• truth table of: $F(W,X,Y,Z) = \overline{WY} + YZ$

differs from the truth table of: F(W,X,Y,Z) = WZ + YZ

Will continue...

