

Highway & Traffic Engineering

RIGID PAVEMENT

by

Dr. Intan Suhana bt Mohd Razelan
Puan Azlina Ismail
Faculty of Civil Engineering & Earth Resources
intan@ump.edu.my

Chapter Description

Aims

 Understand basic terminology, types and important criteria in the construction of rigid pavements.

Expected Outcomes

- Students should be able to differentiate between flexible and rigid pavements.
- Students should be able to explain important features in rigid pavement.
- Students will understand the difference between several type rigid pavements.

References

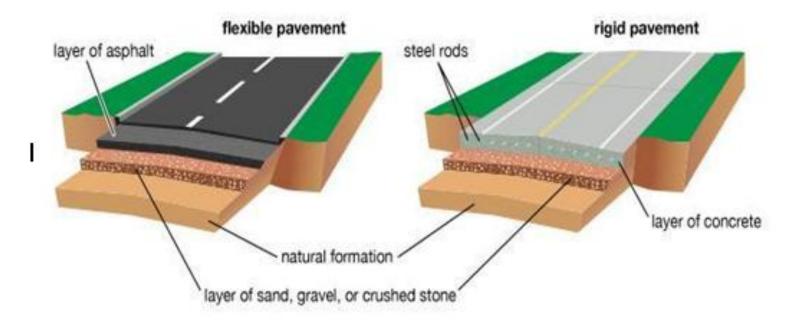
- Highway Engineering, Paul H. Wright / Karen K. Dixon
- Images are taken from other related websites

Concrete Pavements

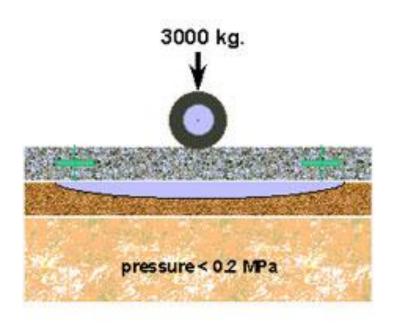
- Compose of aggregate bonded with cement, PCC and water.
- Capable of carrying almost all types of loads
- Surface are smooth, dust free, good skid resistance, low maintenance cost.
- Classified as high type pavements, used in constructions of heavily traveled road.
- Old concrete pavements normally used as base course for new bituminous wearing surface.

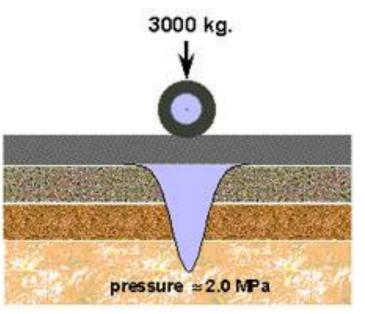
http://transportationengineering 2012 onwards. blogs pot.my/2013/03/expansion-and-contraction-joints-in. html

Rigid Pavement


- Have two different construction method:-
 - Applied directly on prepared subgrade
 - Applied on a single layer of granular or stabilized material / base course
- These types of pavements are called "rigid" because they are substantially stiffer than flexible pavements due to PCC's high stiffness.
- It possess certain degree of beam strength that can span.
- This PCC layer will protect weak sub base and base.
- Rigid pavements are the pavement structure deflects very little under loading due to the high modulus of elasticity of their surface course.

Characteristics of Rigid Pavements


- A rigid pavement structure is typically composed of two layer:
 - the subgrade
 - an underlying base course.
- The pavement structure distributes loads over a wide area with only one, or at most two, structural layers.

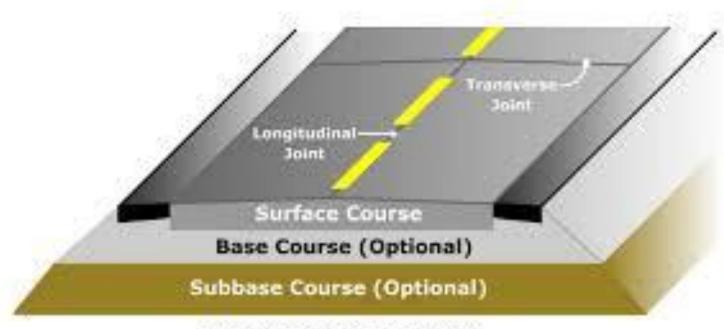

Difference of Flexible and Rigid Pavement Layers

http://www.basiccivilengineering.com/2015/04/comparison-between-flexible-pavement.html

Load Distributions of Rigid Pavement vs. Flexible Pavement

Rigid Pavement Structure

Flexible Pavement Structure


http://designarchitectureart.com/2016/12/difference-between-flexible-pavement-and-rigid-pavement/

Rigid Pavement Layers

- This rigid pavement structure consists of:
 - Surface course. This is the top layer, which consist of the PCC slab.
 - Base course. This is the layer directly below the PCC layer and generally consists of aggregate or stabilized subgrade.
 - Sub-base course. This is the layer (or layers) under the base layer. A sub-base is not always needed and therefore may often be omitted.

Subgrade (Existing Soil)

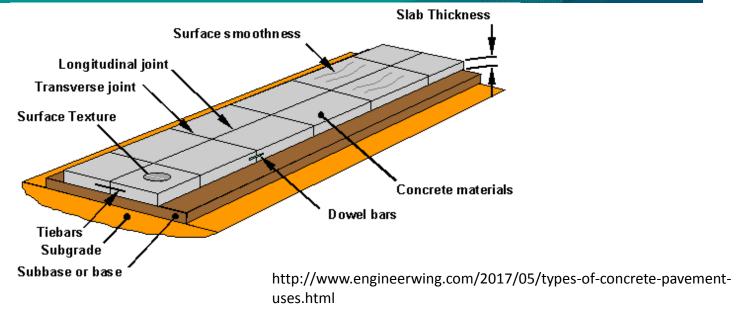
© 2003 Steve Muerch

Base Course

- The base course is immediately beneath the surface course.
- It provides
 - additional load distribution.
 - contributes to drainage and frost resistance.
 - uniform support to the pavement.
 - a stable platform for construction equipment.
- Bases also help prevent subgrade soil movement due to slab pumping.

Surface Course

- The surface course is the layer in contact with traffic loads and is made of PCC.
- It provides characteristics such as friction, smoothness, noise control and drainage.
- It serves as a waterproofing layer to the underlying base, subbase and subgrade.
- The surface course can vary in thickness but is usually between:-
 - 150 mm (6 inches) (for light loading)
 - 300 mm (12 inches) (for heavy loads and high traffic).


Joints and Joints Spacing

- Joints are installed to control stresses induced by volume changes in concrete.
- Stress is caused by :-
 - Contraction due to uniform temperature drop/decrease in temperature
 - Expansion due to uniform temperature increase
 - Warping effects due to vertical temperature or daily moisture differential in slab

Joints in Rigid Pavements

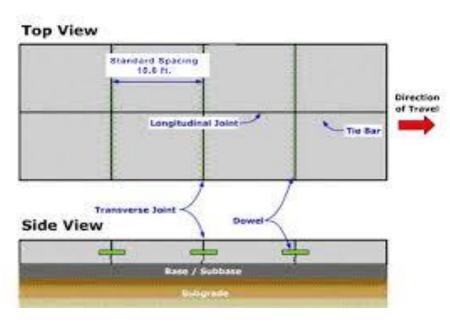
- Joints are the discontinuities in the concrete pavement slab, and help to release stresses due to temperature variation, subgrade moisture variation, shrinkage of concrete etc.
- These discontinuities (joints) could be extended to the full or partial depth of the slab.
- Sometimes iron bars are provided across the joints, the iron bars along the longitudinal joints are called tie bars and along the transverse joints are called dowel bars

Longitudinal and Transverse Joint

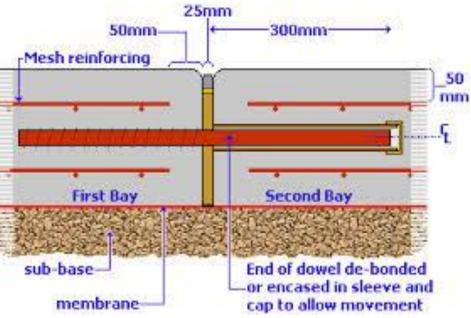
Transverse Joint:

- To control cracking of the slab because of contraction and to relieve stresses.
- Contraction joints and expansion joints were installed along transverse direction

<u>Longitudinal joints</u>:


- Warping joints were installed along the longitudinal directions
- It separates a pavements according to number of lanes

Longitudinal Joints and Transverse Joints

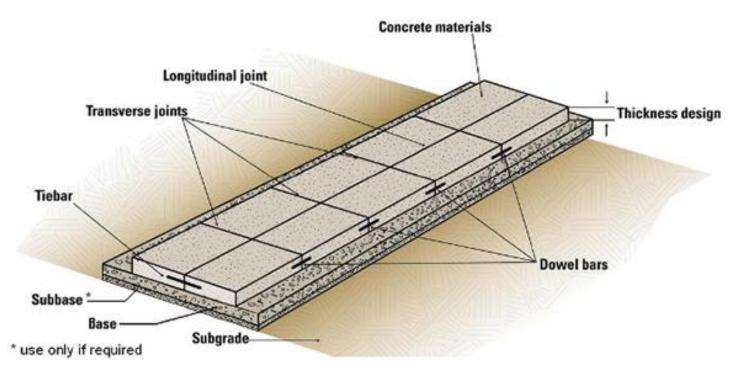


http://engineeringfeed.com/pavement-types

Expansion joints

http://www.pavingexpert.com/concjnt1.htm

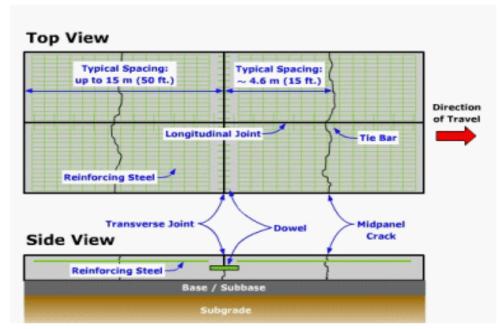
- Expansion joints are constructed to allow for movements of pavements due to rise in temperature in contrast with constructions temperature.
- Expansions joints will be provided along transverse directions.
- Dowel bar is located exactly in the middle of the slab (h/2)



Types of Rigid Pavements

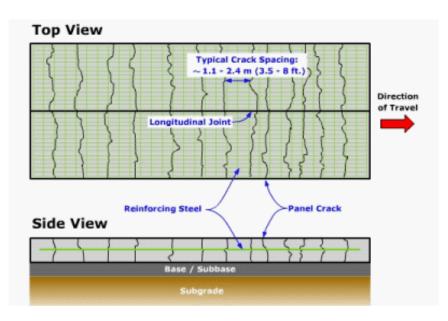
- 1. Jointed Plain Concrete Pavements (JPCP)
- 2. Jointed Reinforced Concrete Pavements (JRCP)
- 3. Continuously Reinforced Concrete Pavements (CRCP)

JPCP


 Short transverse joints spacing, between 15-20 feet long, NO reinforcing steel.

JRCP

 Long joints spacing, between 30 – 100 feet long, reinforcement steel is embedded inside concrete slab to prevent cracking.



http://engineeringfeed.com/pavement-types

CRCP

 NO joints, contain greater percentage of steel to control cracking.

http://engineeringfeed.com/pavement-types

Communitising Technology

Constructions of Rigid Pavement

Exercise

 List out main differences between JPCP, JRCP and CRCP rigid pavements.

Solution

Conclusion of The Chapter

Conclusion #1

 Flexible and rigid pavements are made of different surface material that can withstand different load's types and distribution pattern.

Conclusion #2

 Joints are the most important aspect in the construction of rigid pavements.

Conclusion #3

 3 types of rigid pavements i.e. JPCP, JRCP and CRCP are the most common types of rigid pavements used worldwide.

Author Information

Dr. Intan Suhana bt Mohd Razelan Puan Azlina Ismail

