

Highway & Traffic Engineering

SPOT SPEED STUDIES

by
Pn. Azlina binti Ismail
and
Dr.Intan Suhana binti Mohd Razelan
Faculty of Civil Engineering & Earth Resources
azlinai@ump.edu.my

Chapter Description

Aims

This chapter has presented students on the basic understanding on spot speed studies.

Expected Outcomes

- Identify method associated with spot speed studies
- Analyze speed data for specific application

Contents

- Introduction
- Methods in conducting Spot Speed Study
- Spot speed study analysis and data presentation

Introduction

- Speed Definition Distance travelled by a vehicle during a unit of time and expressed in km/hr
- Used to describe the quality of journey and the performance of road network in accommodating traffic demand
- **Spot speed study definition** speed of traffic at one point or spot on a traffic way (instantaneous speed).

Spot Speed Study Purposes:

- Establishing the speed zone of new or existing speed limit or enforcement practices.
- To determine speeds at the problem locations; to validate whether speeds are too high
- For traffic operation and control;
 - to establish speed limits
 - to determine safe speeds at curves
- Establishing speed trends at the local, state and national level to assess effectiveness of speed limit policy.

Locations For Spot Speed Studies

- i. Speed Trend Locations:
 - Straight, level, open sections of rural highways
 - Midblock locations on urban streets
- ii. Representative locations of different traffic conditions on a highway for basic data survey
- iii. Problematic locations (Specific traffic engineering problem):
 - High accident frequency purposes
 - At points where the installation of traffic signals facility may be necessary

Factors effect spot speed studies:

- Driver Age, Gender, motive of the journey, distance of his trip;
- Vehicle type, age, weight, manufacturer and horse power;
- Roadways and environment the graphical locations, grade, sight distance, no. of lanes, spacing of intersections; including time of day and weather
- Traffic heavy or less volume, density, passing movements, speed regulations;

Methods in conducting Spot Speed Study

Manual methods:

- To observe the time required by a vehicle to cover a short distance.
- Two reference points are located at a roadway at a fixed distance apart.
- Observer starts and stops a stopwatch as vehicle enters and left the test section.
- It is most uncomplicated way.
- Disadvantage because of parallax effect.(refer following figure)

Methods in conducting Spot Speed Study

Parallax Error Illustrated

Function of Roads in Rural Area

- Automatic method (radar meter detector):
 - Using reflected waves of very high frequency is directed from the radar speed meter to the moving vehicle.
 - -The waves which is directly measurable is proportional to the speed at which the vehicle is moving.
 - The limitation of radar meter are:
 - The accuracy is varies, they are generally + 1-2 mi/h.
 - The drivers might be slowing down, this affected the results.
 - A good measurement angle must be acquired.
 - Multilane traffics are difficult to studies.
 - In heavy traffics, it is impossible to record speed of each vehicles.

Data Presentation & Analysis

Graphical presentation:

- Frequency histogram
- ii. Frequency distribution curve
- iii. Cumulative frequency curve;
 - 15 percentile speed
 - 50 percentile speed
 - 85 percentile speed
 - 95 percentile speed

Statistical analysis:

- Arithmetic mean speed
- ii. Median speed
- iii. Modal speed
- iv. Standard deviation

Graphical Presentation

Frequency histogram of observed vehicles' speeds
Source: Figure 4.4, Garber and Hoel (2002).

Communitising Technology

Graphical Presentation

Frequency distribution curve of observed vehicles' speeds

Source: Figure 4.5, Garber and Hoel (2002).

Graphical Presentation

Frequency Cumulative Curve of observed vehicles' speeds

Source: Figure 4.6, Garber and Hoel (2002).

Statistical Analysis

- i. Arithmetic mean speed
 - is the average speed of all observed vehicles

$$\overline{X} = \frac{\sum fv}{n}$$

where

f = frequency of observation in the particular group

v = mean speed of each group

n = number of observations

Statistical Analysis

- ii. Median Speed The median speed is a middle volume speed in the distribution whole volumes which is arranged in ascending order
 - It is also called 50th percentage speed (P50)
- iii. Modal speed is the speed value that occurs most frequently in a sample of spot speeds.

Statistical Analysis

 Standard deviation of speeds is a measure of the spread of the individual speeds

$$sd = \sqrt{\frac{\sum fv^2}{n-1} - \frac{(\sum fv)^2}{n(n-1)}}$$

where;

f = frequency of observation in the particular group

v = mean speed of each group

n = number of observations

EXAMPLE

The accompanying data (Table Q2) shows spot speeds collected at Jalan Duta, Kuala Lumpur. Based on statistical method, determine the values of the following:

- i) Arithmetic mean speed
- ii) Mode speed
- iii) Median speed
- iv) Standard deviation

Speed Class	No of		
(km/hr)	vehicles		
10 – 14.9	2		
15 – 19.9	6		
20 – 24.9	5		
25 – 29.9	4		
30 – 34.9	7		
35 – 39.9	1		
40 – 44.9	8		
45 – 49.9	9		
50 – 54.9	5		
55 – 59.9	6		
60 – 64.9	4		

ANSWER

Speed	No of	Mean	V ²	f.v	(f.v ²)
class	vehicles, f	speed, V			
(km/hr)					
10 – 14.9	2	12.45	155.003	24.9	310.005
15 – 19.9	6	17.45	304.503	104.7	1827.015
20 – 24.9	5	22.45	504.003	112.25	2520.013
25 – 29.9	4	27.45	753.503	109.8	3014.01
30 – 34.9	7	32.45	1053.003	227.15	7371.018
35 – 39.9	1	37.45	1402.503	37.45	1402.503
40 – 44.9	8	42.45	1802.003	339.6	14416.02
45 – 49.9	9	47.45	2251.503	427.05	20263.52
50 – 54.9	5	52.45	2751.003	262.25	13755.01
55 – 59.9	6	57.45	3300.503	344.7	19803.02
60 – 64.9	4	62.45	3900.003	249.8	15600.01
	57		18177.52 8	2239.65	100282.1

Arithmetic,
$$x = \underline{\Sigma \text{ f.v}}$$

n
= $\underline{2239.65}$
57
= 39.29 km/hr

Median =
$$L + \frac{(n/2 - f_l)}{f_m} xC$$

= $35 + \frac{(57/2 - 24)}{1} x4.9$
= 57.05 km/hr

Standard deviation =
$$\frac{\sum f.v^2}{(n-1)} - \frac{(\sum fv)^2}{n(n-1)}$$
$$= \frac{(100282.1)^2}{(57-1)} - \frac{(2239.65)^2}{57(57-1)}$$
$$= 14.81 \text{ km/hr}$$

Mode speed = 45 - 49.9 km/hr

References

- Nicholas J.Garber and Lester A. Hoel, Traffic & Highway Engineering 3rd Edition Brooks Cole 2002
- Roger P. Roess, Elena S. Prassas and William R. McShane, TRAFFIC ENGINEERING 3rd Edition, Pearson Education International, 2004.