Highway \& Traffic Engineering

SPOT SPEED STUDIES

by
Pn. Azlina binti Ismail
and
Dr.Intan Suhana binti Mohd Razelan Faculty of Civil Engineering \& Earth Resources
azlinai@ump.edu.my

Chapter Description

Aims
This chapter has presented students on the basic understanding on spot speed studies.

Expected Outcomes

- Identify method associated with spot speed studies
- Analyze speed data for specific application

Contents

- Introduction
- Methods in conducting Spot Speed Study
- Spot speed study analysis and data presentation

Introduction

- Speed Definition - Distance travelled by a vehicle during a unit of time and expressed in km/hr
- Used to describe the quality of journey and the performance of road network in accommodating traffic demand
- Spot speed study definition - speed of traffic at one point or spot on a traffic way (instantaneous speed).

Spot Speed Study Purposes:

- Establishing the speed zone of new or existing speed limit or enforcement practices.
- To determine speeds at the problem locations; to validate whether speeds are too high
- For traffic operation and control;
- to establish speed limits
- to determine safe speeds at curves
- Establishing speed trends at the local, state and national level to assess effectiveness of speed limit policy.

Locations For Spot Speed Studies

i. Speed Trend Locations:

- Straight, level, open sections of rural highways
- Midblock locations on urban streets
ii. Representative locations of different traffic conditions on a highway for basic data survey
iii. Problematic locations (Specific traffic engineering problem):
- High accident frequency purposes
- At points where the installation of traffic signals facility may be necessary

Factors effect spot speed studies:

- Driver - Age, Gender, motive of the journey, distance of his trip;
- Vehicle - type, age, weight, manufacturer and horse power;
- Roadways and environment - the graphical locations, grade, sight distance, no. of lanes, spacing of intersections; including time of day and weather
- Traffic - heavy or less volume, density, passing movements, speed regulations;

Methods in conducting Spot Speed Study

Manual methods:

- To observe the time required by a vehicle to cover a short distance.
- Two reference points are located at a roadway at a fixed distance apart.
- Observer starts and stops a stopwatch as vehicle enters and left the test section.
- It is most uncomplicated way.
- Disadvantage because of parallax effect.(refer following figure)

Methods in conducting Spot Speed Study

Parallax Error Illustrated

Function of Roads in Rural Area

- Automatic method (radar meter detector):
- Using reflected waves of very high frequency is directed from the radar speed meter to the moving vehicle.
-The waves which is directly measurable is proportional to the speed at which the vehicle is moving.
- The limitation of radar meter are:
$>$ The accuracy is varies, they are generally $\pm 1-2 \mathrm{mi} / \mathrm{h}$.
$>$ The drivers might be slowing down, this affected the results.
$>$ A good measurement angle must be acquired.
$>$ Multilane traffics are difficult to studies.
$>$ In heavy traffics, it is impossible to record speed of each vehicles.

Data Presentation \& Analysis

Graphical presentation:
i. Frequency histogram
ii. Frequency distribution
curve
iii. Cumulative frequency curve;

- 15 percentile speed
- 50 percentile speed
- 85 percentile speed
- 95 percentile speed

Statistical analysis:
i. Arithmetic mean speed
ii. Median speed
iii. Modal speed
iv. Standard deviation

Graphical Presentation

Frequency histogram of observed vehicles' speeds
Source: Figure 4.4, Garber and Hoel (2002).

Graphical Presentation

Frequency distribution curve of observed vehicles' speeds
Source: Figure 4.5, Garber and Hoel (2002).

Graphical Presentation

Frequency Cumulative Curve of observed vehicles' speeds

Statistical Analysis

i. Arithmetic mean speed - is the average speed of all observed vehicles

$$
\bar{X}=\underline{\sum f v}
$$

n
where
;
$f=$ frequency of observation in the particular group
$v=$ mean speed of each group
$\mathrm{n}=$ number of observations

Statistical Analysis

ii. Median Speed - The median speed is a middle volume speed in the distribution whole volumes which is arranged in ascending order

- It is also called $50^{\text {th }}$ percentage speed (P50)
iii. Modal speed is the speed value that occurs most frequently in a sample of spot speeds.

Statistical Analysis

- Standard deviation of speeds is a measure of the spread of the individual speeds

$$
s d=\sqrt{\frac{\sum f v^{2}}{n-1}-\frac{\left(\sum f v\right)^{2}}{n(n-1)}}
$$

where ;
$\mathrm{f}=$ frequency of observation in the particular group
$v=$ mean speed of each group
$\mathrm{n}=$ number of observations

EXAMPLE

The accompanying data (Table Q2) shows spot speeds collected at Jalan Duta, Kuala Lumpur. Based on statistical method, determine the values of the following:
i) Arithmetic mean speed
ii) Mode speed
iii) Median speed
iv) Standard deviation

Speed Class $(\mathrm{km} / \mathrm{hr})$	No of vehicles
$10-14.9$	2
$15-19.9$	6
$20-24.9$	5
$25-29.9$	4
$30-34.9$	7
$35-39.9$	1
$40-44.9$	8
$45-49.9$	9
$50-54.9$	5
$55-59.9$	6
$60-64.9$	4

ANSWER

Speed class (km/hr)	No of vehicles, f	Mean speed, V	V^{2}	$\mathrm{f} . \mathrm{v}$	$\left(\mathrm{f} . \mathrm{v}^{2}\right)$
$10-14.9$	2	12.45	155.003	24.9	310.005
$15-19.9$	6	17.45	304.503	104.7	1827.015
$20-24.9$	5	22.45	504.003	112.25	2520.013
$25-29.9$	4	27.45	753.503	109.8	3014.01
$30-34.9$	7	32.45	1053.003	227.15	7371.018
$35-39.9$	1	37.45	1402.503	37.45	1402.503
$40-44.9$	8	42.45	1802.003	339.6	14416.02
$45-49.9$	9	47.45	2251.503	427.05	20263.52
$50-54.9$	5	52.45	2751.003	262.25	13755.01
$55-59.9$	6	57.45	3300.503	344.7	19803.02
$60-64.9$	4	62.45	3900.003	249.8	15600.01
	57		18177.52	2239.65	100282.1

$$
\begin{aligned}
\text { Arithmetic, } x & =\frac{\Sigma \mathrm{f} . \mathrm{v}}{\mathrm{n}} \\
& =\frac{2239.65}{57} \\
& =39.29 \mathrm{~km} / \mathrm{hr}
\end{aligned} \begin{aligned}
& \text { Median }=L+\frac{\left(n / 2-f_{l}\right)}{f_{m}} x C \\
&= 35+\frac{(57 / 2-24)}{1} x 4.9 \\
&= 57.05 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Standard deviation $=\frac{\sum f \cdot v^{2}}{(n-1)}-\frac{\left(\sum f v\right)^{2}}{n(n-1)}$

$$
=\frac{(100282.1)^{2}}{(57-1)}-\frac{(2239.65)^{2}}{57(57-1)}
$$

$$
=14.81 \mathrm{~km} / \mathrm{hr}
$$

Mode speed $\quad=45-49.9 \mathrm{~km} / \mathrm{hr}$

References

- Nicholas J.Garber and Lester A. Hoel, Traffic \& Highway Engineering $3^{\text {rd }}$ Edition Brooks Cole 2002
- Roger P. Roess, Elena S. Prassas and William R. McShane, TRAFFIC ENGINEERING $3^{\text {rd }}$ Edition, Pearson Education International, 2004.

