

Alternative Energy

Chapter 6 Part 2: PV Grid-Connected System Design

by Mohd Shawal Jadin Faculty of Electrical & Electronic Engineering mohdshawal@ump.edu.my

Communitising Technology

Chapter Description

- Expected Outcomes
 - To organize the system component integration

- References
 - Grid-connected Solar Electric Systems: The Earthscan Expert Handbook by Geoff Stapleton and Susan Neill, 2010.

System Sizing

- It is important to ensure that the array is matched to the inverter's input specifications so that all system components are appropriately sized to suit the sitespecific conditions.
- Inverter should be chosen so that the maximum power output from the designed PV array (given in W_p) matches the inverter's maximum array power input (given in Wp).
- Avoided over—sizing of the inverter as it will reduce the inverter's operating efficiency and hence reduce overall power output.
- The designer needs to ensure that the inverter and PV array match in terms of voltage, current and power to ensure a safe and efficient PV system.

There are two voltage specifications that need to be met.

- The maximum system voltage of the module. A PV array voltage must not exceed this voltage.
- The operating voltage of the inverter must not be exceeded.

Typical Electrical Characteristics

Maximum Power (P _{max})	75W
Voltage at Pmax (Vmp)	17.0V
Current at Pmax (Imp)	4.45A
Warranted minimum P _{max}	70W
Short circuit current (I _{SC})	4.75A
Open-cicuit voltage (V _{OC})	21.4V
Temperature coefficient of I _{SC}	(0.065±0.015)%/°C
Temperature coefficient of V _{oc}	–(80±10)mV/°C
Temperature coefficient of Power	-(0.5±0.05)%/°C
NOCT	47±2°C
Maximum System Voltage	600V

- The maximum input voltage is the maximum DC voltage that the inverter is designed to handle safely.
- If the array's open circuit voltage exceeds the maximum input voltage, it may damage the inverter's electronic components.
- The vast majority of grid interactive inverters also have a maximum power point tracking (MPPT) range with specified minimum and maximum voltages.
- Within this range, the inverter tracks the maximum power point to ensure the array' performs as well as possible; outside this range the array is likely to underperform.

Inverter specifications

Inverter window operating voltage

PV array MPPT input voltage range

Maximum PV array voltage (must not exceed this value)

Maximum PV array current

Inverter Efficiency

INPUT DATA	Fronius IG 300	Fronius IG 400
MPP voltage range	210 - 420 V	210 - 420 V
Max. input voltage (at 1000 W/m ² ; -10°C)	530 V	530 V
Recommended PV plant output	24 kWp - 31 kWp	32 kWp - 42 kWp
Max. input current	123 A	164 A
OUTPUT DATA	Fronius IG 300	Fronius IG 400
Nominal output	24 KW	32 kW
Max. power output	24 kW	32 kW
Max. efficiency	94,3 %	94,3 %
Euro efficiency	93,3 %	93,4 %
Mains voltage / frequency		3NPE~400 V / 50 Hz
Distortion factor		< 5 %
Power factor		1
Power consumption at night		9 W

- The first step to acquire maximum and minimum temperatures at the installation site. From these, the PV module cell temperatures can be calculated.
- The PV cells will operate at a much higher than the air temperature quoted in weather report.
- National codes should be consulted first as they may specify the ambient or cell temperatures that should be used in sizing calculations.
- In Malaysia, the minimum and maximum cell temperatures are 20°C and 75°C, respectively.

- Calculate the expected voltage output of the array that is affected by the change of cell temperatures.
- Datasheet generally provide at least one temperature coefficient for Voltage (a specific rating that describes the effect of temperature on the cell voltage).
- Usually expressed as a percentage or in volts per degree celcius, whereas some manufacturers only provide a Pmax (maximum power) temperature coefficient that can be used as an approximation for the Voltage temperature coefficient.

Typical Electrical Characteristics

Maximum Power (P _{max})	75W
Voltage at Pmax (Vmp)	17.0V
Current at Pmax (Imp)	4.45A
Warranted minimum Pmax	70W
Short circuit current (I _{SC})	4.75A
Open-cicuit voltage (V _{OC})	21.4V
Temperature coefficient of I _{SC}	(0.065±0.015)%/°C
Temperature coefficient of V _{OC}	–(80±10)mV/°C
Temperature coefficient of Power	–(0.5±0.05)%/°C
NOCT	47±2°C
Maximum System Voltage	600V

Calculating Maximum Voltage

The module's maximum voltage (V_{OC} is present at the minimum cell temperature which in this case is 25°C; it is therefore important to use the opencircuit voltage (V_{OC}) and adjust this figure according to the temperature coefficient when calculating the maximum voltage.

- $\gamma_{V_{OC}}$ given in percentage $V_{\max_OC} = V_{OC_STC} \times \{1 + (\gamma_{V_{OC}} \times (T_{cell_min} - T_{STC}))\}$
- $\gamma_{V_{OC}}$ given in absolute value $V_{\max_OC} = V_{OC_STC} + (\gamma_{V_{OC}} \times (T_{cell_min} - T_{STC}))$

Calculating Minimum Voltage

- The module's minimum voltage will occur when the cell is hottest, i.e. at a cell temperature of 75°C. This is calculated using the maximum power Voltage, V_{mp} and corresponding temperature coefficient.
- A temperature coefficient is not given for maximum power voltage, so the temperature coefficient for maximum power should be used as an approximation this is given in %/°C on the data sheet and so must be converted to V/°C :

Temperature coefficient of I _{SC}	(0.065±0.015)%/°C
Temperature coefficient of V_{OC}	–(80±10)mV/°C
Temperature coefficient of Power	-(0.5±0.05)%/°C

$$V_{\min_mp} = V_{mp_STC} + \left(\left\{ \frac{\gamma_{P_{mp}}}{100} \times V_{mp_STC} \right\} \times \left(T_{cell_min} - T_{STC} \right) \right)$$

Calculating Minimum Number of Modules in a String

The minimum module voltage is multiplied by the voltage drop expected across the DC cables (V_{dc_drop})	$V_{\min_mp_eff} = V_{\min_mp} \times V_{dc_drop}$ V_{dc_drop} is voltage drop in percentage
The minimum inverter input voltage should be multiplied by 1.1 to account for the 10% safety margin required	$V_{\min_win_inv_allow} = 1.1 \times V_{\min_win_inv}$
Finally, the minimum number of modules in the string is calculated by dividing this figure by the minimum module voltage	$N_{\min_module} = \frac{V_{\min_win_inv_allow}}{V_{\min_mp_eff}}$

Calculating Maximum Number of Modules in a String

The maximum inverter input voltage is reduced to account for the 5% safety margin

The maximum inverter voltage should be divided by the maximum module voltage (as previously calculated to determine the maximum allowable modules in a string) $V_{\text{max _win_inv_allow}} = 0.95 \times V_{\text{max _win_inv}}$

$$N_{\max_module} = \frac{V_{\max_win_inv_allow}}{V_{\max_OC}}$$

Inverter-PV Array Matching

- The number of module in a string can be selected between N_{min_module} and N_{max_module}
- In practice, it is recommended that the actual number of modules in the string that is close to 75% of the allowable voltage window.
- This should ensure that the array MPP voltage is always operating within the window in times of high temperature and also if shading occur

Matching current specifications

- An array normally has several strings connected in parallel and the input DC current will be the sum of the currents of all the strings connected to the inverter.
- The short-circuit current is used in these calculations because it is the largest current the module will produce.
- To calculate the Maximum number of parallel string of the array :

 $N_{\max_parallel_string} = \frac{I_{\max_dc_inv}}{f_{safety} \times I_{SC_string}}$

I _{max _dc_inv}	 maximum inverter DC input current
f _{safety}	 safety factor (range betwen 1.1 to 1.25)
I _{SC_string}	 short circuit current of string at STC

