

Alternative Energy

Chapter 4 Part 1: PV System Configuration

by Mohd Shawal Jadin Faculty of Electrical & Electronic Engineering mohdshawal@ump.edu.my

Communitising Technology

Chapter Description

- Expected Outcomes
 - understand about PV system configuration
- References
 - Grid-connected Solar Electric Systems: The Earthscan Expert Handbook by Geoff Stapleton and Susan Neill, 2010.
 - Stand-alone Solar Electric Systems: The Earthscan Expert Handbook for Planning, Design and Installation by Mark Hankins, Earthscan, 2010.

PV System Configurations

- The configuration depends on the type of PV system
- PV systems are generally divided into three major categories:
 - grid-connected (also known as grid
 tied) systems that are interfaced to an electricity grid;
 - stand-alone (off grid) systems that are self contained.
 - Hybrid system

Grid-Connected System

- The main components for a grid-connected system is PV modules, grid-inverter and energy meter
- Inverter will convert from DC voltage into AC voltage
- Use two energy meters: PV meter and consumption meter

PV Array

Arrangement of grid-connected PV systems

- Type of grid inverter
 - Central inverter
 - String inverter
 - Multi string inverter
 - Modular inverter

Central Inverter

Use one inverter for the whole PV array Generally used for a large system (>10kWp)

String Inverter

Connected across on string of PV modules.

Generally used for in small systems ranging from 1kWp to 11kWp.

Multi-String Inverter

Using only one inverter but has a number of MPPT inputs

The advantage of this inverter: it still can produce higher power output although the strings are facing at different direction

Modular Inverter

- Modular inverters (micro-inverters) are small transformer-less inverter
- Normally it is designed to be mounted on the back of the PV module

PV Stand-alone Systems

- PV stand-alone systems (off-grid system) are typically used when there is no electric grid or the costs for connecting to a grid are too high.
- Various stand-alone PV schemes are possible, depending on the application:
 - Without battery storage or inverter
 - With battery storage, without inverter.
 - With inverter, without battery storage.
 - With inverter and battery storage.

PV Stand-alone Systems

Structure of a simple PV stand-alone system

