

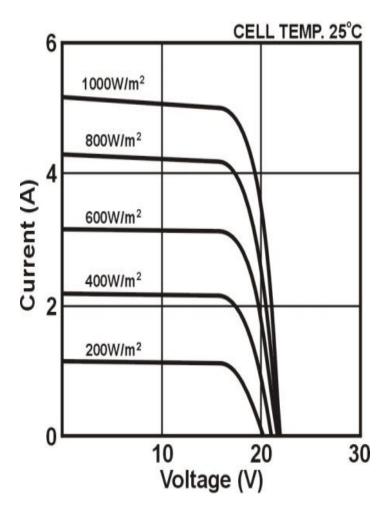
Alternative Energy Chapter 3 Part 2 Photovoltaic Cell/Module Performance by Mohd Shawal Jadin Faculty of Electrical & Electronic Engineering mohdshawal@ump.edu.my

Communitising Technology

Chapter Description

- Expected Outcomes
 - understand the factors that effect to PV cell/module performance

References

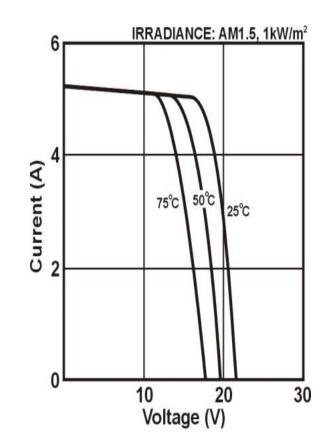

- Grid-connected Solar Electric Systems: The Earthscan Expert Handbook by Geoff Stapleton and Susan Neill, 2010.
- Stand-alone Solar Electric Systems: The Earthscan Expert Handbook for Planning, Design and Installation by Mark Hankins, Earthscan, 2010.

PV Output

- Power output of a module depends on:
 - -Number of cells in the module
 - -Type of cells
 - -Total surface area of the cells
- The power output of a module changes depending on:
 - –Amount of solar radiation
 - PV cells temperature

Effect of Solar Irradiance

- Current output of a PV module is highly dependent on irradiance
- Voltage output does not change dramatically
- Power significantly increases with the increase of solar irradiance


Effect of Temperature

- The output of a PV cell or module depends on its operating temperature
- The module's temperature gets elevated when exposed to the sun
- Thus it is imperative that the operating cell temperature of a module is determined when designing the system

Effect of Temperature

The output of a PV module is related to temperature as follows:

- Current marginally increases with an increase in module temperature.
- Voltage significantly decreases with an increase in module temperature.
- Power significantly decreases with an increase in module temperature

The V_{mp} decreases by approximately 0.5% per °C as the PV cell temperature increases above 25°C

Cell Operating Temperature

 The empirical formula for calculating the cell or module temperature during operation when exposed in the field is:

$$T_{cell} = T_{amb} + \left[\left(\frac{NOCT - 20}{800 W m^{-2}} \right) \times G \right]$$

NOCT – Nominal operating cell temperature (given by manufacturer)

 T_{amb} – Average maximum ambient temperature

G – Irradiance at that ambient temperature

• In case NOCT is not available, the approaximate value of cell temperature is $T_{cell} = T_{amb}$ + 25°C

PV Module Specification

- Datasheet provides technical information required to design and install PV array
- Useful for user to compare different types of PV modules as it provides basic information about efficiency, rated power and physical size
- The electro-physical output rating of PV cells and modules are given at specific conditions
- These conditions are called as Standard Test Conditions (STC)

Testing Standards

Standard Test Condition (STC) is defined as follows:

PARAMETER	SYMBOL	VALUE
Irradiance at normal incidence	G	1,000 Wm ⁻²
Cell temperature	Т	25°C
Solar Spectrum (Air Mass)	AM	1.5

• All PV cell/module manufacturers provide their datasheet at this conditions

Testing Standards

- Nominal Operating Cell Temperature (NOCT) gives a more practical indication of the probable operating cell temperature in real conditions.
- The NOCT conditions are defined as:

PARAMETER	SYMBOL	VALUE
Irradiance at normal incidence	G	$800 Wm^{-2}$
Cell temperature	Т	20°C
Solar Spectrum (Air Mass)	AM	1.5
Wind Speed	WS	$1.0 \ ms^{-1}$

PV Module Specification

.....

Electrical Characteristics

		SX 160B	SX 150B	SX 140B
Output at STC	Maximum power (P _{max})	160W	150W	140W
	Voltage at Pmax (Vmp)	35.0V	34.5V	34.0V
	Current at Pmax (Imp)	4.57A	4.35A	4.11A
	Warranted minimum Pmax	150W	140W	130W
	Short-circuit current (I _{SC})	4.85A	4.75A	4.5A
Temperature coefficient	Open-circuit voltage (V _{oc})	44.0V	43.5V	42.8V
	Temperature coefficient of Isc	(0.065±0.015)%/°C		
	Temperature coefficient of voltage	-(160±20)mV/°C		
	Temperature coefficient of power	-(0.5±0.05)%/°C		
	NOCT	47±2°C		
Nominal operating cell temperature	Maximum series fuse rating	15A		
	Maximum system voltage	600V (U.S. NEC rating) 1000V (TÜV Rheinland rating)		

Courtesy of BP Solar

