

Alternative Energy Chapter 3 Part 1 Photovoltaic Principle

by

Mohd Shawal Jadin Faculty of Electrical & Electronic Engineering mohdshawal@ump.edu.my

Communitising Technology

Chapter Description

- Expected Outcomes
 - understand PV cell characteristic
- References
 - Grid-connected Solar Electric Systems: The Earthscan Expert Handbook by Geoff Stapleton and Susan Neill, 2010.
 - Stand-alone Solar Electric Systems: The Earthscan Expert Handbook for Planning, Design and Installation by Mark Hankins, Earthscan, 2010.

PV Cell

- Solar/PV cell convert sunlight to electricity based on 'photoelectric effect'
- Made from semiconductor material (silicon)
- Silicon is the most widely used material in PV cell production.

Solar Cell Technology

- 1. Monocrystalline silicon a single silicon seed crystal
- 2. Poly/Multicrystalline silicon composed of many small crystals which grow in random orientations
- **3.** Amorphous silicon Thin film noncrystalline silicon that is deposited on the back of glass or substrate
- 4. Heterojunction with intrinsic thin layer (HIT) - use both crystalline silicon cells and amorphous silicon thin film technology

Solar Cell Technology

Type of PV Technology	Commercially Module Efficiency	Note
Monocrystalline	14-20%	The most efficient and expensive
Poly/Multicrystalline	13-15%	Lower efficiency than mono
Amorphous Silicon Thin Film	6-9%	Less expensive to manufacture

PV Cell Characteristic

PV cell can represented using an equivalent circuit diagram of a p-n junction (single diode model)

- *I_L* light generated current
- *I_D* diode current
- *I*_{SH} shunt current
- *R*_{SH} shunt resistor
- *R_S* series resistor
- V voltage across the PV cell

PV cell equivalent circuit

PV Cell Characteristic

- The characteristic of a PV cell can be presented in I-V curve
- Plot of current versus voltage at different resistances
- Power is OW when either
 I or V is equal to zero.
- Maximum power (*P_{mp}*) is produced when V= *V_{mp}* at which point the current is *I_{mp}*

PV Cell Characteristic

• Fill factor,
$$FF = \frac{I_{mp} \times V_{mp}}{I_{sc} \times V_{oc}}$$

- Typical values of fill factor range between 0.6 and 0.7
- Conversion Efficiency,

$$\eta = \frac{P_{out}}{P_{in}} = \frac{I_{mp} \times V_{mp}}{G \times A} = \frac{I_{sc} \times V_{oc} \times FF}{G \times A}$$

$$P_{out}$$
 – output from cell
G – solar irradiance

 P_{in} – input from cell

A – active area of cell

PV Cell and Module Configuration

