

BCS3323 – Software Testing and Maintenance

Test Case Design Black Box

Editors Dr. AbdulRahman A. Alsewari Faculty of Computer Systems & Software Engineering alswari@ump.edu.my

Black Box Testing

• Black-box testing: Testing, either functional or non-functional, without reference to the internal structure of the component or system. (ISTQB)

Black Box Testing

- testing without knowing the internal workings of the code
- WHAT a system does, rather than HOW it works it
- typically used at System Test phase, although can be useful throughout the test lifecycle
- also known as specification based testing and function testing
- Applies for Functional and Non-Functional testing

If Output = Expected result then pass

White Box Testing

white-box testing: Testing based on an analysis of the internal structure of the component or system. (ISTQB)

White Box Testing

- testing based upon the structure of the code
- typically undertaken at Component and Component Integration Test phases by development teams
- also known as structural or glass box testing or structure based testing

Test Case Design

- Terminologies
 - Test condition an item or event of a component or system that could be verified by one or more test cases
 - Test case specification— a set of input values, execution preconditions, expected results, and execution postconditions, designed for a specific test objective or test condition
 - A test procedure specification a sequence of actions for the execution of the test. It may consist of number of test cases.
 - Test basis: All documents from which the SRS, SDS, code, or any related documents of a component or a system can be inferred.

Test Conditions, Cases, Procedures and Schedule

Illustrative Example of Test Case Design -1

In order for 3 integers a, b, and c to be the sides of a triangle, the following conditions must be met:

```
Scalene: a + b > c, where a < b < c
Isosceles: a + a > c, where b=a
Equilateral: a = a = a, where b=a, c=a, and a > 0
```

A triangle is: Scalene if no two sides are equal Isosceles if 2 sides are equal Equilateral if all 3 sides are equal

С

void triangle (int a, int b, int c) int min, med, max; if (a>b) max=a; min = b;else max = b;min = a;if (c>max) max = c;else if (c<max) min = c;med = a+b+c-min-max; if (max>min+med) cout << "Impossible triangle\n";</pre> else if (max==min) cout << "Equilateral triangle\n";</pre> else if (max==med||med==min) cout << "Isoceles triangle\n";</pre> else if (max*max==min*min + med*med) cout << "Rightangled triangle\n";</pre> else cout << "Any triangle\n";</pre>

Illustrative Example of Test Case Design -2

		Te: w	st Ora ith ex	acle –	test ca d resul	ses ts - Tes	Conform t pass when	nance Analysis expected = actual results
		485					/	
	Conditions	Test ID	a	b	c	Expected Results	Actual Results	
	Scalene=> a+h>c	#1	3	4	6	Scalene		
	where a <b<c< td=""><td>#2</td><td>6</td><td>4</td><td>3</td><td>Scalene</td><td></td><td></td></b<c<>	#2	6	4	3	Scalene		
		#3	3	6	4	Scalene		
	Isosceles=> a + a > c	#4	2	2	3	Isosceles		
	where b=a	#5	2	3	2	Isosceles		
		#6	3	2	2	Isosceles		
	Equilateral => a = a = a,	#7	4	4	4	Equilateral		
	where b=a, c=a, and a >0	=8	2	2	2	Equilateral		
Test Case	Invalid Scalene =>	#9	1	2	4	Not a triangle		
	a+b≤c	=10	1	4	2	Not a triangle		
an and a second second		#11	2	1	4	Not a triangle		
Test Suite – collection of test cases	Invalid Isosceles =>	#12	2	2	4	Not a triangle		
	$a+a \le c$, where $b=a$	#13	2	4	2	Not a triangle		
		#14	4	2	2	Not a triangle		
	Invalid input =>	#15	0	1	2	Not a triangle		
	a=0 or b=0 or c=0 or	#16	2	0	1	Not a triangle		
	all a=b=c≤0	#17	1	2	0	Not a triangle		
		#18	0	0	0	Not a triangle		
		#19	5	-1	7	Not a triangle		
		#20	-5	-1	-1	Not a triangle		T . D 1

Test Procedure

Procedure

- 1. Change directory to \UnitTest
- 2. Run project.Triangle
- 3. Enter all the values of a,b,c when prompted.
- 4. Check the printed output for actual value.

Why dynamic test techniques?

- Dynamic test technique is a sampling technique.
- Exhaustive testing is testing all potential inputs and conditions is unrealistic
 - So we need to use a subset of all potential test cases
 - Select the high likelihood of detecting defects
- There is a required processes to select the efficient and intelligent test cases
 - test case design techniques are such thought processes

What is a testing technique?

- a process for selecting or designing test cases based on a specification or structure model of the system
- successful when detecting defects
- 'best' practice
- It is a process of a best test cases derived
- a process of objectively evaluating the test effort

Testing should be rigorous, thorough and systematic

Advantages of techniques

- Different people: similar probability find faults
 - gain some independence of thought
- Effective testing: find more faults
 - focus attention on specific types of fault
 - know you're testing the right thing
- Efficient testing: find faults with less effort
 - avoid duplication
 - systematic techniques are measurable

Using techniques makes testing much more effective

Measurement

- Objective assessment of thoroughness of testing (with respect to use of each technique)
 - useful for comparison of one test effort to another

• E.g.

Project C 30% Boundaries partitions 40% Equivalence 70% Branches

Project D 70% Branches partitions 50% Boundaries 45% Equivalence

Black Box Techniques for Test Case Design

- primarily black box technique
- divide (partition) the inputs, outputs, etc. into areas which are the same (equivalent)
- assumption: if one value works, all will work
- one from each partition better than all from one

- faults tend to lurk near boundaries
- good place to look for faults
- test values on both sides of boundaries

Rule of Thumb for BVA

Example 1: EP

void ValveControl (int pressure, int temperature)

```
if (pressure \leq 10)
    OpenTheValve();
    printf ("Valve opened\n");
if (pressure > 100)
   CloseTheValve();
  printf ("Valve closed\n");
else
   ShutDown();
if (temperature > 27)
  EnableCoolingCoil();
  printf ("Cooling coil enabled\n");
 else
  DisableCollingCoil();
```

- Using EP and BV, derive the set of values for pressure and temperature.
- Enumerate
 exhaustively all the
 values of pressure
 and temperature to
 form a complete test
 suite.

Example 2: EP & BVA

- Scenario: If you take the train before 9:30 am or in the afternoon after 4:00pm until 7:30 pm ('the rush hour'), you must pay full fare. A saver ticket is available for trains between 9:30 am and 4:00 pm.
 - Identify the partitions
 - Identify the boundary values to test train times for ticket type
 - Derive the test cases using EP and BVA

Example 3: EP

Consider a component, generate_grading, with the following specification:

The component is passed an exam mark (out of 75) and a coursework (c/w) mark (out of 25), from which it generates a grade for the course in the range 'A' to 'D'. The grade is calculated from the overall mark which is calculated as the sum of the exam and c/w marks, as follows:

greater than or equal to 70	-	$'\!A'$
greater than or equal to 50, but less than 70	-	'B'
greater than or equal to 30, but less than 50	-	C'
less than 30	-	'D'

Where a mark is outside its expected range then a fault message ('FM') is generated. All inputs are passed as integers.

Valid partitions

• The valid partitions can be

-0<=coursework <=25

Invalid partitions

- The most obvious partitions are
 - Exam mark > 75
 - Exam mark < 0</p>
 - Coursework mark > 25
 - Coursework mark <0</p>

Exam mark and c/w mark

And for the input, coursework mark, we get:

Less obvious invalid input EP

• invalid INPUT EP should include

exam mark = real number (a number with a fractional part) exam mark = alphabetic coursework mark = real number coursework mark = alphabetic

Partitions for the OUTPUTS

• EP for valid OUTPUTS should include

'A' 'B' 'C' 'D' 'Fault Message' 'Fault Message'

is induced by is induced by

- 70 <= total mark <= 100 50 <= total mark < 70 30 <= total mark < 50 0 <= total mark < 30
- total mark > 100

total mark < 0

The EP and boundaries

• The EP and boundaries for total mark

Unspecified Outputs

- Three unspecfied Outputs can be identified (very subjective)
 - Output = "E"
 - Output = "A+"
 - Output = "null"

Total EP

 $0 \le exam mark \le 75$ exam mark > 75exam mark < 0 $0 \le \text{coursework mark} \le 25$ coursework mark > 25coursework mark < 0exam mark = real number exam mark = alphabetic coursework mark = real number coursework mark = alphabetic 70 <= total mark <= 100 $50 \leq \text{total mark} \leq 70$ $30 \leq \text{total mark} \leq 50$ $0 \leq \text{total mark} \leq 30$ total mark > 100total mark < 0output = 'E' = 'A+' output = 'null' output

Test Cases corresponding to EP exam mark (INPUT)

Test Case	1	2	3
Input (exam mark)	44	-10	93
Input (c/w mark)	15	15	15
total mark (as calculated)	59	5	108
Partition tested (of exam mark)	0 <= e <= 75	e < 0	e > 75
Exp. Output	'B'	'FM'	'FM'

Test Case 4-6 (coursework)

Test Case	4	5	6
Input (exam mark)	40	40	40
Input (c/w mark)	8	-15	47
total mark (as calculated)	48	25	87
Partition tested (of c/w mark)	0 <= c <= 25	c < 0	c > 25
Exp. Output	'C'	'FM'	'FM'

Test case for Invalid inputs

The test cases corresponding to partitions derived from possible invalid inputs are:

Test Case	7	8	9	10
Input (exam mark)	48.7	q	40	40
Input (c/w mark)	15	15	12.76	g
total mark (as calculated)	63.7	not applicable	52.76	not applicable
Partition tested	exam mark =	exam mark =	c/w mark =	c/w mark =
	real number	alphabetic	real number	alphabetic
Exp. Output	'FM'	'FM'	'FM'	'FM'

Test cases for outputs:1

The test cases corresponding to partitions derived from the valid outputs are:

Test Case	11	12	13
Input (exam mark)	-10	12	32
Input (c/w mark)	-10	5	13
total mark (as calculated)	-20	17	45
Partition tested (of total mark)	t < 0	0 <= t < 30	30 <= t < 50
Exp. Output	'FM'	'D'	'C'

Test cases for outputs:2

Test Case	14	15	16
Input (exam mark)	44	60	80
Input (c/w mark)	22	20	30
total mark (as calculated)	66	80	110
Partition tested (of total mark)	50 <= t < 70	70 <= t <= 100	t > 100
Exp. Output	'B'	'A'	'FM'

Test cases for invalid outputs:3

The test cases corresponding to partitions derived from the invalid outputs are:

Test Case	17	18	19
Input (exam mark)	-10	100	null
Input (c/w mark)	0	10	null
total mark (as calculated)	-10	110	null+null
Partition tested (output)	'E'	'A+'	'null'
Exp. Output	'FM'	'FM'	'FM'

