
BCS3323 – Software Testing and 

Maintenance

Test Case Design 

Black Box

Editors

Dr. AbdulRahman A. Alsewari
Faculty of Computer Systems & Software 

Engineering
alswari@ump.edu.my

For Updated version, please click on this
http://ocw.ump.edu.my

mailto:alswari@ump.edu.my


Black Box Testing

• Black-box testing: Testing, either functional 
or non-functional, without reference to the 
internal structure of the component or 
system. (ISTQB)



– testing without knowing the internal workings of the code
– WHAT a system does, rather than HOW it works it
– typically used at System Test phase, although can be useful 

throughout the test lifecycle
– also known as specification based testing and function 

testing
– Applies for Functional and Non-Functional testing

Black Box Testing

Input Output

If Output = Expected result then pass

Test Execution  



White Box Testing

white-box testing: Testing based on 
an analysis of the internal structure 
of the component or system. 

(ISTQB)



White Box Testing

– testing based upon the structure of the code

– typically undertaken at Component and Component 
Integration Test phases by development teams

– also known as structural or glass box testing or 
structure based testing

Input Output

Execute with monitor the flow 



Test Case Design

• Terminologies

– Test condition – an item or event of a component or system that 
could be verified by one or more test cases

– Test case specification– a set of input values, execution 
preconditions, expected results, and execution postconditions, 
designed for a specific test objective or test condition

– A test procedure specification – a sequence of actions for the 
execution of the test. It may consist of number of test cases.

– Test basis: All documents from which the SRS, SDS, code, or any 
related documents of a component or a system can be inferred.

6



Test 
Execution 
Schedule

Test Conditions, Cases, Procedures and 

Schedule

How

Test 
Cases

Test 
Cases

So
u

rced
 D

o
cu

m
e

n
tatio

n

What

Test 
Condition 

Priority

WhenHow

Test 
Procedure 

Specification 

Manual Test 
Script 

Automated 
Test Script 

or

Test Procedure

Specifications



Illustrative Example of Test Case Design -1 

8

In order for 3 integers a, b, and c to be the 
sides of a triangle, the following conditions 
must be met: 
 Scalene:  a + b > c, where a<b<c
 Isosceles:  a + a > c, where b=a
 Equilateral: a = a = a, where b=a, c=a, and a >0

A triangle is:
Scalene if no two sides are equal
Isosceles if 2 sides are equal
Equilateral if all 3 sides are equal

a b

c

void triangle (int a, int b, int c)
{
int min,med, max;     

if (a>b)
{

max=a;
min = b;

}
else
{

max = b;
min = a;

}
if (c>max)

max = c;
else if (c<max)

min = c;
med = a+b+c-min-max;
if (max>min+med)

cout << "Impossible triangle\n";
else if (max==min)

cout << "Equilateral triangle\n";
else if (max==med||med==min)

cout << "Isoceles triangle\n";
else if (max*max==min*min + med*med)

cout << "Rightangled triangle\n";
else

cout << "Any triangle\n";
}

•



Illustrative Example of Test Case Design -2 

9



Why dynamic test techniques?

• Dynamic test technique is a sampling technique.

• Exhaustive testing is testing all potential inputs and 
conditions is unrealistic

– So we need to use a subset of all potential test 
cases

– Select the high likelihood of detecting defects

• There is a required  processes to select the efficient 
and intelligent test cases

– test case design techniques are such thought 
processes

10



What is a testing technique?

• a process for selecting or designing test cases based 
on a specification or structure model of the system

• successful when detecting defects

• 'best' practice

• It is a process of a best test cases derived 

• a process of objectively evaluating the test effort

Testing should be rigorous, thorough and 

systematic  

11



Advantages of techniques

• Different people: similar probability find faults

– gain some independence of thought

• Effective testing: find more faults

– focus attention on specific types of fault

– know you're testing the right thing 

• Efficient testing: find faults with less effort

– avoid duplication

– systematic techniques are measurable

Using techniques makes testing much 

more effective
12



Measurement

• Objective assessment of thoroughness of testing 
(with respect to use of each technique)

– useful for comparison of one test effort to another

• E.g.

Project C

30% Boundaries

partitions

40% Equivalence 

70% Branches

Project D

70% Branches

partitions

50% Boundaries

45% Equivalence 

13



Black Box Techniques for Test Case Design 

14



Equivalence partitioning (EP)

– primarily black box technique 

– divide (partition) the inputs, outputs, etc. into areas 
which are the same (equivalent)

– assumption: if one value works, all will work

– one from each partition better than all from one

1 100 1010

valid invalidinvalid

15



Boundary value analysis (BVA)

– faults tend to lurk near boundaries

– good place to look for faults

– test values on both sides of boundaries

1 100 1010

valid invalidinvalid

16



17



Example 1: EP

• Using EP and BV, 
derive the set of 
values for pressure 
and temperature.

• Enumerate 
exhaustively all the 
values of pressure 
and temperature to 
form a complete test 
suite.

18

void ValveControl (int pressure, int temperature)

{
if (pressure <= 10)

{
OpenTheValve();
printf (“Valve opened\n”);

}
if (pressure > 100)
{

CloseTheValve();
printf (“Valve closed\n”);

}
else

{
ShutDown();

}               

if (temperature > 27)
{

EnableCoolingCoil();
printf (“Cooling coil enabled\n”);

}
else 
{

DisableCollingCoil();
}            

}



Example 2: EP & BVA

• Scenario: If you take the train before 9:30 am 
or in the afternoon after 4:00pm until 7:30 pm 
(‘the rush hour’), you must pay full fare. A 
saver ticket is available for trains between 
9:30 am and 4:00 pm.

– Identify the partitions

– Identify the boundary values to test train times for 
ticket type

– Derive the test cases using EP and BVA

19



Example 3: EP

20



Valid partitions

• The valid partitions can be

–0<=exam mark <=75

–0<=coursework <=25

21



Invalid partitions

• The most obvious partitions are

– Exam mark > 75

– Exam mark < 0

– Coursework mark > 25

– Coursework mark <0

22



Exam mark and c/w mark

23



Less obvious invalid input EP

• invalid INPUT EP should include

24



Partitions for the OUTPUTS

• EP for valid OUTPUTS should include

25



The EP and boundaries

• The EP and boundaries for total mark

26



Unspecified Outputs

• Three unspecfied Outputs can be identified 
(very subjective)

– Output = “E”

– Output = “A+”

– Output = “null”

27



Total EP

28



Test Cases corresponding to EP exam 
mark (INPUT)

29



Test Case 4-6 (coursework)

30



Test case for Invalid inputs

31



Test cases for outputs:1

32



Test cases for outputs:2

33



Test cases for invalid outputs:3

34


