For updated version, please click on http://ocw.ump.edu.my

Computer Graphics

Illumination Models (Surface Rendering)

Prepared by Dr. Md. Manjur Ahmed Faculty of Computer Systems and Software Engineering manjur@ump.edu.my

Chapter Description

- Aims
 - Basic of Computer Graphics.
- Expected Outcomes
 - Understand the basic concept of computer graphics. (CO1: Knowledge)
 - Ability to use the computer graphics technology. (CO1: Knowledge)
- References
 - Donald Hearn & M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.
 - Computer Graphics by Zhigang Xiang, Schaum's Outlines.

Illumination Model

- An illumination model
 - ✓ calculate the intensity of light that we should see at a given point on the surface of an object.
 - Done by simulating some light attributes
- Can be
 - Local illumination
 - Global illumination

Illumination Model

- Local illumination
 - Models only the direct illumination from the source
 - Based on the light, the observer position, and the properties of the object material

Illumination Model

- Global illumination
 - take into account the interaction of light from the bouncing of the another objects
 - consider all the surfaces in the scene

Model functions

- Light sources
 - Determine the color, intensity, lines through space
- Reflection of light
 - How much the reflection angle
 - How are color and intensity changed

Point Light Sources

- Simplest model
- Emits equal intensity in all direction

Directional Light Sources

- Infinitely distant light source, like the sun, can be modelled as a point light source
- Consider directional effect of all light rays because these rays seems parallel for its distance.

Definied by:

- direction (x,y,z)
- intensity (r,g,b)

L = -direction

Intensity Attenuation

Intensity diminished for light because of the distance of the light source

• Intensity diminished by a factor of $\frac{1}{d^2}$ where distance *d*

$$f_{\text{radial}}_{\text{attenuation}} \left(d \right) = \begin{cases} 1.0, & \text{source at infinity} \\ \frac{1}{a_0 + a_1 d + a_2 d^2}, & \text{local source} \end{cases}$$

- A user can adjust the coefficients a_o, a₁, and a₂, to obtain a variety of lighting effects
- If d is very small then constant term, a_o need to be adjusted to prevent f(d) become too large.

Spotlights

Then

Light Source

Reference: Donald Hearn & M. Pauline Baker, Computer Graphics with OpenGL

• If this angle is restricted with the θ_l , then the object is within the spotlight.

Iniversit

Spotlights - Angular Intensity Attenuation

 Points outside the cone are not illuminated (stay in dark).

where *a* is a constant