For updated version, please click on http://ocw.ump.edu.my

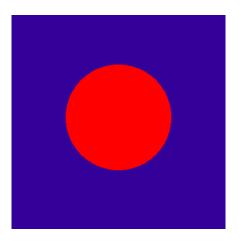
Computer Graphics

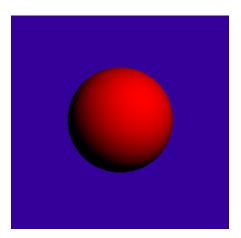
Color

Prepared by Dr. Md. Manjur Ahmed Faculty of Computer Systems and Software Engineering manjur@ump.edu.my

Chapter Description

- Aims
 - Basic of Computer Graphics.
- Expected Outcomes
 - Understand the basic concept of computer graphics. (CO1: Knowledge)
 - Ability to use the computer graphics technology. (CO1: Knowledge)
- References
 - Computer Graphics by Zhigang Xiang, Schaum's Outlines.
 - Donald Hearn & M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.


Why Lighting?


- Neurological and Psychological responses: Color is a fundamental attribute of human visual system.
- The perception of color comes from light energy.
- Visible light: Electromagnetic energy, range 400 to700 nm wavelength

Why Lighting?

- Relevant to computer graphics: A realistic image seems fuzzy from the light energy coming from a real scene.
- If no lighting effects: Then nothing looks three dimensional!

Why Lighting?

- Why discuss color?
 - Example: brightness, tint, luminance, shade, hue, color, chromaticity, ...
 - To know how the eye recognizes color.
 - -To know how the interaction between light (color) and objects for rendering (3D to viewing 2D) them accurately or realisticly.

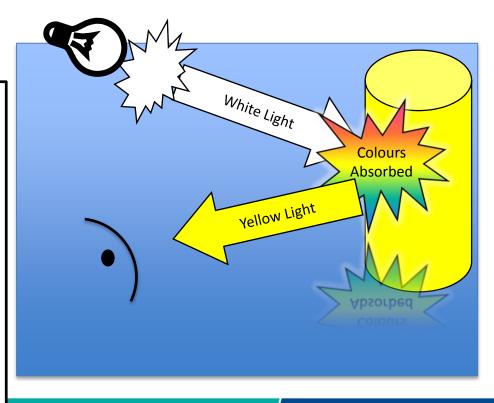
Chromatic Light & Achromatic Light

 Chromatic light: Having color components with intensity called

• Achromatic Light: No color components, only having intensity called achromatic light

Properties of Chromatic light

- Brightness ---- total amount of energy from a light source, corresponds to its physical property called luminance.
 - Higher the luminance, brighter the light to the observer.
- Hue --- distinguishes the white light to others
- **Saturation** ---- excitation purity, which is defined to be the percentage of luminance


saturation = pure color/(pure color + white color)

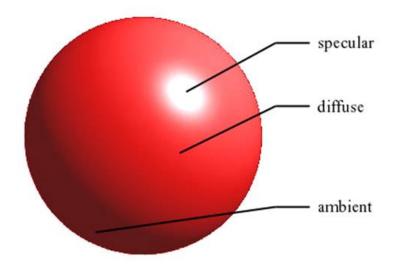
Basics of Reflected Light

- Human perception for colors:
 - Determined by the nature of the light which is reflected from an object.

 Example: If white light is fall onto a yellow object then color with high wavelengths are absorbed, but yellow light is reflected from the object as in Figure.

Basics of Reflected Light

- Depends on the type of material
- Dull surfaces absorb more
- Shiny materials reflect more
- For transparent surfaces, light also transmitted through the material


Components of Reflections

Specular – near total of the incident light around reflection angle.

Diffuse – reflection from **incident** light with equal intensity in all directions. This depend on surface properties.

Ambient – surface visible to **incidental light** which is reflected from adjacent objects.

Real Lights and Reflection

- Real lights
 - Sun light, fluorescent or iridescent bulbs etc.
 - There exists different spectra in different directions
- Moreover
 - Light also can come from a source, or light that bouncing off another object, or after multiple bounces of light
 - Extension of sources
 - Multiple interactions between light and surface

RGB Space

- Three primary light or color that can be identified by human visual system (i.e. cone)
 - Red (R), Green (G), and Blue (B)
- Additive nature in order to produce other colors

• Practically, hardware uses three color phosphors. Therefore, Perfect for graphical imaging

CIE XYZ Color Model

CIE --- Commission Internationale de l'Eclairage (English: International Commission on Illumination)

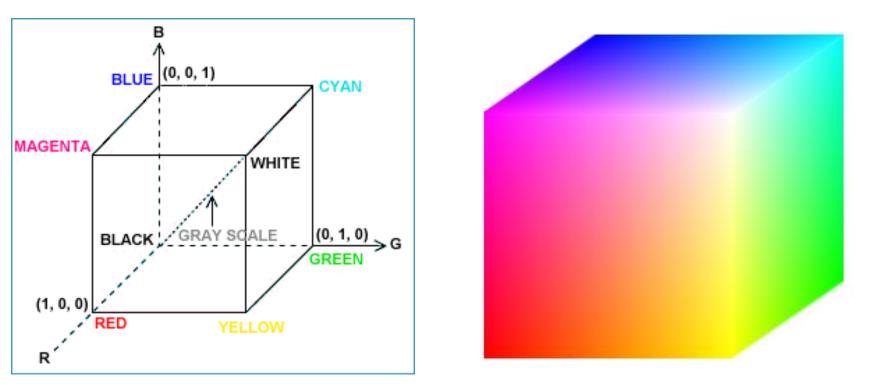
➤ standard for sharing color information

✓Two chromaticity (similar to hue or color) values: axis X and Z

✓One luminance (similar to intensity) value: axis Y

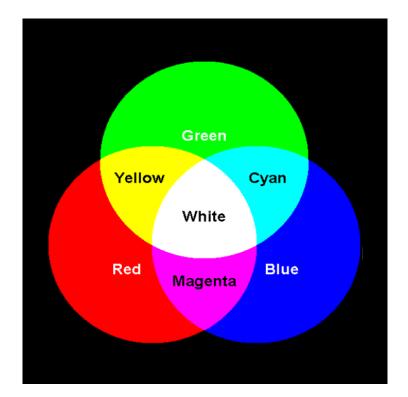
Color Model

- Description of a co-ordinate system
- Each color represented by a single point.
- Two model:
 - Hardware oriented and
 - Application oriented.


Hardware Oriented Color Model

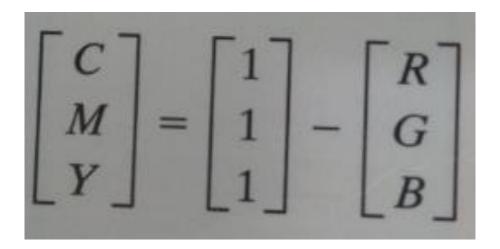
- ✓ RGB (Red, Green, Blue) model for color monitor
- CMY (Cyan, Magenta, Yellow) for video
 cameras
- CMYK (Cyan, Magenta, Yellow and Black) for color printer

RGB Color Model



References: http://archives.sensorsmag.com/articles/0498/sum0498/ And http://www.cs.ru.nl/~ths/rt2/col/h2/2fundENG.html

Additive RGB Colors


CMY, Subtractive RGB Colors

- Secondary colors, three color: Cyan, Magenta, Yellow
- Consider the method of subtractive color
- Similar to RGB but
 - \checkmark white is at the origin
 - ✓ but black is at the extent of the diagonal

CMY Color Model

• Used in color printers.

CMYK Color Model

- Equal amount of colors primaries (i.e. cyan, magenta and yellow) will produce black.
- But for printing, combination of these colors produces a muddy-looking black.
- Therefore, forth color, black is added.