Computer Graphics

Color

Prepared by
Dr. Md. Manjur Ahmed
Faculty of Computer Systems and Software
Engineering
manjur@ump.edu.my

Chapter Description

- Aims
- Basic of Computer Graphics.
- Expected Outcomes
- Understand the basic concept of computer graphics. (CO1: Knowledge)
- Ability to use the computer graphics technology. (CO1: Knowledge)
- References
- Computer Graphics by Zhigang Xiang, Schaum's Outlines.
- Donald Hearn \& M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.

Why Lighting?

- Neurological and Psychological responses: Color is a fundamental attribute of human visual system.
- The perception of color comes from light energy.
- Visible light: Electromagnetic energy, range 400 to 700 nm wavelength

Why Lighting?

- Relevant to computer graphics: A realistic image seems fuzzy from the light energy coming from a real scene.
- If no lighting effects: Then nothing looks three dimensional!

Why Lighting?

- Why discuss color?
-Example: brightness, tint, luminance, shade, hue, color, chromaticity, ...
- To know how the eye recognizes color.
-To know how the interaction between light (color) and objects for rendering (3D to viewing 2D) them accurately or realisticly.

Chromatic Light \& Achromatic Light

- Chromatic light: Having color components with intensity called
- Achromatic Light: No color components, only having intensity called achromatic light

Properties of Chromatic light

- Brightness ---- total amount of energy from a light source, corresponds to its physical property called luminance.
- Higher the luminance, brighter the light to the observer.
- Hue --- distinguishes the white light to others
- Saturation ---- excitation purity, which is defined to be the percentage of luminance saturation = pure color/(pure color + white color)

Basics of Reflected Light

- Human perception for colors:
- Determined by the nature of the light which is reflected from an object.
$>$ Example: If white light is fall onto a yellow object then color with high wavelengths are absorbed, but yellow light
 is reflected from the object as in Figure.

Basics of Reflected Light

- Depends on the type of material
- Dull surfaces absorb more
- Shiny materials reflect more
- For transparent surfaces, light also transmitted through the material

Components of Reflections

Specular - near total of the incident light around reflection angle.
Diffuse - reflection from incident light with equal intensity in all directions. This depend on surface properties.

Ambient - surface visible to incidental light which is reflected from adjacent objects.

Real Lights and Reflection

- Real lights
- Sun light, fluorescent or iridescent bulbs etc.
- There exists different spectra in different directions
- Moreover
- Light also can come from a source, or light that bouncing off another object, or after multiple bounces of light
- Extension of sources
- Multiple interactions between light and surface

RGB Space

- Three primary light or color that can be identified by human visual system (i.e. cone)
- Red (R), Green (G), and Blue (B)
- Additive nature in order to produce other colors
- Practically, hardware uses three color phosphors. Therefore, Perfect for graphical imaging

CIE XYZ Color Model

>CIE --- Commission Internationale de I'Eclairage (English: International Commission on Illumination) $>$ standard for sharing color information
\checkmark Two chromaticity (similar to hue or color) values: axis X and Z
\checkmark One luminance (similar to intensity) value: axis Y

Color Model

- Description of a co-ordinate system
- Each color represented by a single point.
- Two model:
- Hardware oriented and
- Application oriented.

Hardware Oriented Color Model

\checkmark RGB (Red, Green, Blue) model for color monitor
\checkmark CMY (Cyan, Magenta, Yellow) for video
cameras
\checkmark CMYK (Cyan, Magenta, Yellow and Black) for color printer

RGB Color Model

References: http://archives.sensorsmag.com/articles/0498/sum0498/ And http://www.cs.ru.nl/~ths/rt2/col/h2/2fundENG.html

Additive RGB Colors

CMY, Subtractive RGB Colors

$>$ Secondary colors, three color: Cyan, Magenta, Yellow
>Consider the method of subtractive color
$>$ Similar to RGB but
\checkmark white is at the origin
\checkmark but black is at the extent of the diagonal

CMY Color Model

- Used in color printers.

CMYK Color Model

- Equal amount of colors primaries (i.e. cyan, magenta and yellow) will produce black.
- But for printing, combination of these colors produces a muddy-looking black.
- Therefore, forth color, black is added.

