

Computer Graphics

Projections

(Viewing Transformations)

Prepared by
Dr. Md. Manjur Ahmed
Faculty of Computer Systems and Software
Engineering
manjur@ump.edu.my

Chapter Description

Aims

Basic of Computer Graphics.

Expected Outcomes

- Understand the basic concept of computer graphics. (CO1: Knowledge)
- Ability to use the computer graphics technology. (CO1: Knowledge)

References

- Computer Graphics by Zhigang Xiang, Schaum's Outlines.
- Donald Hearn & M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston:
 Addison Wesley, 2011.

Motivation

> We want to see our "virtual 3-D world" on a 2-D monitor (screen)

map the object from 3D space to 2D screen

Graphics Pipeline

Projection

• **PROJECTIONS** transform objects or points in a coordinate system from <u>dimension</u> *m* into a coordinate system of <u>dimension</u> n where m < n.

• Focus: Projection from 3D to 2D.

Projections (key terms)

Let, AB is a straight line.

- Projectors: straight projection rays
- Center of projection: Its emanating from a Projectors,

Projection plane: Projectors passing through each point of

the object, an

Types of viewing transforms

- Two types of viewing transforms
 - Orthographic (parallel projection)
 - Perspective (convergent projection)
- Key factor: *center of projection*.
 - if distance to center of projection
 is finite: perspective projection
 - if distance to center of projection is infinite : parallel or Orthographic

Perspective v Orthographic

- Perspective Projection:
 - visual effect: similar to visual system of human
 - existence of the "foreshortening"
 - size of object inversely proportional with the distance of the COP (center of projection).

Perspective v Orthographic

- Orthographic Projection:
 - It is a less realistic view because it not consider "foreshortening"
 - parallel lines continue as parallel.

1) foreshortening An object appears smaller if it further from center of projection (COP)

2) Vanishing Points: Any set of parallel lines that are not perpendicular to view plane normal (or not parallel to view plane), can be appeared to meet at vanishing point.

3) View Confusion: If any object exist behind the COP (center of projection), then it can be projected onto the view-plane seems like upside down and backward.

P1'

4) Topological distortion: Consider all points on a plan.

If these points are parallel to view plane and passes

through the COP, then these points are projected to a

broken line of infinite degree.

Projection Mathematics

Projective Transformations

Settings for perspective projection

Perspective Projection

Perspective Projection

From triangle ABC and A'B'C

$$\frac{AB}{BC} = \frac{A'B'}{B'C}$$

$$\frac{x}{z} = \frac{x'}{-d} \Rightarrow x' = \frac{x}{-(z/d)}$$
similarly, $y' = \frac{y}{-(z/d)}$ and,
$$z' = -d$$

$$(x', y', z', 1) \Rightarrow \left(\frac{x}{-(z/d)}, \frac{y}{-(z/d)}, -d, 1\right)$$

Projective Transformation

