Computer Graphics

Projections

(Viewing Transformations)
Prepared by
Dr. Md. Manjur Ahmed
Faculty of Computer Systems and Software
Engineering manjur@ump.edu.my

Chapter Description

- Aims
- Basic of Computer Graphics.
- Expected Outcomes
- Understand the basic concept of computer graphics. (CO1: Knowledge)
- Ability to use the computer graphics technology. (CO1: Knowledge)
- References
- Computer Graphics by Zhigang Xiang, Schaum's Outlines.
- Donald Hearn \& M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.

Motivation

$>$ We want to see our "virtual 3-D world" on a 2-D monitor (screen)
$>$ map the object from 3D space to 2D screen

Graphics Pipeline

Model Transformations

Model Space

World Space

Viewing Transformation

Eye/Camera Space

Screen Space

Projection

- PROJECTIONS transform objects or points in a coordinate system from dimension m into a coordinate system of dimension n where $m<n$.
- Focus: Projection from 3D to 2D.

Projections (key terms)

Let, $A B$ is a straight line.

- Projectors: straight projection rays
- Center of projection: Its emanating from a Projectors,

Projection plane: Projectors passing through each point of the object, an

Types of viewing transforms

- Two types of viewing transforms
- Orthographic (parallel projection)
- Perspective (convergent projection)
- Key factor: center of projection.
- if distance to center of projection is finite : perspective projection
- if distance to center of projection is infinite : parallel or Orthographic

Center of projection

Perspective v Orthographic

- Perspective Projection:
- visual effect: similar to visual system of human
- existence of the "foreshortening"
- size of object inversely proportional with the distance of the COP (center of projection).

Perspective v Orthographic

- Orthographic Projection :
- It is a less realistic view because it not consider "foreshortening"
- parallel lines continue as parallel.

Perspective Projection

1) foreshortening An object appears smaller if it further from center of projection (COP)

Perspective Projection

2) Vanishing Points: Any set of parallel lines that are not perpendicular to view plane normal (or not parallel to view plane), can be appeared to meet at vanishing point.

3) View Confusion: If any object exist behind the COP (center of projection), then it can be projected onto the view-plane seems like upside down and backward.
4) Topological distortion: Consider all points on a plan. If these points are parallel to view plane and passes through the COP, then these points are projected to a broken line of infinite degree.

Plane containing
Center of Projection (COP)

Projection Mathematics

Projective Transformations

Settings for perspective projection

Perspective Projection

Perspective Projection

- From triangle $A B C$ and $A^{\prime} B^{\prime} C$

$$
\begin{aligned}
& \frac{A B}{B C}=\frac{A^{\prime} B^{\prime}}{B^{\prime} C} \\
& \frac{x}{z}=\frac{x^{\prime}}{-d} \Rightarrow x^{\prime}=\frac{x}{-(z / d)}
\end{aligned}
$$

$$
\text { similarly, } y^{\prime}=\frac{y}{-(z / d)} \text { and, }
$$

$$
z^{\prime}=-d
$$

$$
\left(x^{\prime}, y^{\prime}, z^{\prime}, 1\right) \Rightarrow\left(\frac{x}{-(z / d)}, \frac{y}{-(z / d)},-d, 1\right)
$$

Projective Transformation

$$
\begin{aligned}
& \left(\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
\frac{x}{-(z / d)} \\
\frac{y}{-(z / d)} \\
-d \\
1
\end{array}\right) \longrightarrow\left(\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z \\
z \\
-\frac{d}{d}
\end{array}\right) \\
& \left(\begin{array}{c}
x \\
y \\
z \\
z
\end{array}\right) \xrightarrow{\substack{\text { perspective } \\
d i v i s i o n}}\left(\begin{array}{c}
\frac{x}{-(z / d)} \\
\frac{y}{-(z / d)} \\
-d \\
1
\end{array}\right) \longleftrightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z \\
-\frac{z}{d}
\end{array}\right)
\end{aligned}
$$

