Computer Graphics

2D Viewing and Clipping

Prepared by
Dr. Md. Manjur Ahmed
Faculty of Computer Systems and Software
Engineering
manjur@ump.edu.my

Chapter Description

- Aims
- Basic of Computer Graphics.
- Expected Outcomes
- Understand the basic concept of computer graphics. (CO1: Knowledge)
- Ability to use the computer graphics technology. (CO1: Knowledge)
- References
- Computer Graphics by Zhigang Xiang, Schaum's Outlines.
- Donald Hearn \& M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.

Viewing transformation

$>$ Master coordinate system, commonly referred to as the world coordinate system \checkmark Clipping window: What do we want to see? \checkmark Viewport: Where do we want to see it?

a) World Coordinate System

b) Device Coordinate System

Viewing transformation

$>$ Viewing Transformation: coordinate-mapping

 operations between world and viewing coordinate system.\checkmark clipping window is mapped to the viewport

a) World Coordinate System

b) Device Coordinate System

Clipping

- Objects in the scene possibly will be completely
(a) inside the window,
(b) outside the window,

Or (c) partially visible through the window

- Why?

Because of reducing time complexity....

- Reduce time complexity to avoid the scan converting pixels outside window
- Therefore, avoid time and iteration because of rasterizing outside of framebuffer bounds

2D Clipping algorithms

- Cohen-Sutherland Algorithm (Line)
- Liang-Barsky algorithm (Line)
- Sutherland-Hodgeman Algorithm (Polygon)

Line Clipping

Possible Configuration:

1.Both endpoints are inside the region

- No clipping necessary
2.One endpoint in, one out
- Clip at intersection point

3.Both endpoints outside the region:
a. No intersection
b. Line intersects the region
- Clip line at both intersection points

Line Clipping: Cohen-Sutherland

 Algorithm- Concept: Let a line with end point pairs $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, y_{2}\right)$
- Trivial Accept/Rejects
- Initial tests on a line for acceptance or rejection:
- Determine whether intersection calculations is required.
- If neither be trivially accepted nor rejected, this line is divided into two segments at a clip edge. Thus, one segment can be trivially rejected.

Cohen-Sutherland Algorithm

- Assign a 4-bit region code to each endpoint c_{0}, c_{1}
Bit1 $=\mathbf{1}$ if $y>y_{\max }$ i.e. 1000
Bit2 $=\mathbf{1}$ if $y<y_{\text {min }}$ i.e. 0100
Bit3 $=\mathbf{1}$ if $x>x_{\max }$ i.e. 0010
Bit4 $=1$ if $x<x_{\text {min }}$ i.e. 0001
========================
Algorithm: accept/reject
if $\left(c_{0} \mid c_{1}\right)=0000$
accept (draw)
else if $\left(c_{0} \& c_{1}\right) \neq 0000$ reject (don't draw) else clip using intersection points and retest

Intersect point

- If 1000 , intersect with line $\mathrm{y}=\mathrm{y}_{\text {max }}$
- If 0100 , intersect with line $y=y_{\text {min }}$
- If 0010, intersect with line $x=x_{\text {max }}$
- If 0001, intersect with line $x=x_{\text {min }}$

Intersect Point $\left(x_{j} y_{i}\right)$

$$
\left.\begin{array}{l}
x_{i}=x_{\min } \text { or } x_{\max } \\
y_{i}=y_{1}+m\left(x_{i}-x_{1}\right)
\end{array}\right\} \text { If edge line is vertical }
$$

OR

$$
\begin{aligned}
& x_{i}=x_{1}+\left(y_{i}-y_{1}\right) / m \\
& y_{i}=y_{\min } \text { or } y_{\max }
\end{aligned}
$$

If edge line is horizontal
where, $m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{2}\right)$

Cohen-Sutherland Algorithm

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-1}{6-2.2}=\frac{4}{3.8}=1.05
$$

Cohen-Sutherland Algorithm

Cohen-Sutherland Algorithm

Cohen-Sutherland Algorithm

Another Example

Another Example

