Computer Graphics

Two-Dimensional Transformations

Edited by
Dr. Md. Manjur Ahmed
Faculty of Computer Systems and Software
Engineering
manjur@ump.edu.my

Chapter Description

- Aims
- Basic of Computer Graphics.
- Expected Outcomes
- Understand the basic concept of computer graphics. (CO1: Knowledge)
- Ability to use the computer graphics technology. (CO1: Knowledge)
- References
- Dr. Masudul Ahsan, Dept. Of CSE, Khulna University of Engineering and Technology (KUET), Bangladesh.
- Computer Graphics by Zhigang Xiang, Schaum's Outlines.
- Donald Hearn \& M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.

Modeling Transformations

- Simulate the manipulation of objects in space
- Two contrary points of view for describing object
- Geometric transformation -
- Relative to a stationary coordinate system
- Changes in orientation, size and shape
- Coordinate Transformation - Keeping the object stationary while coordinate system is transformed with respect to the stationary object.

Geometric transformation

- Basic Transformations
- Translation
- Rotation
- Scaling
- Shear
- Mirror reflection

Translation - 2D Transformation (about the Origin)

- Object is moved to a new position
\checkmark Considering distance and direction
- Let, new point $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$ is found by adding translation distance $\left(\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}\right)$ to $\mathrm{P}(\mathrm{x}, \mathrm{y})$. Then displacement vector is

$$
x^{\prime}=x+t_{x} \text { and } y^{\prime}=y+t_{y}-y^{\prime}(1)
$$

Let's column vector

$$
P=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \quad T=\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

Therefore, Eqn (1) can be rewritten as $P^{\prime}=P+T$

Rotation - 2D

- Object is rotated along a circular path using rotation angle (θ)
- Rotation angle (θ)
- Counter clockwise, + θ
- Clockwise, - θ
- Consider center $(0,0)$ of rotation means that origin as pivot point

Rotation - 2D

$$
\begin{aligned}
P=\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\left[\begin{array}{l}
r \cos \phi \\
r \sin \phi
\end{array}\right] \\
P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] & =\left[\begin{array}{l}
r \cos (\phi+\theta) \\
r \sin (\phi+\theta)
\end{array}\right] \\
& =\left[\begin{array}{l}
r \cos \phi \cos \theta-r \sin \phi \sin \theta \\
r \cos \phi \sin \theta+r \sin \phi \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{l}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta
\end{array}\right]
\end{aligned}
$$

Rotation - 2D

Matrix form

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \cdot \cos \theta-y \cdot \sin \theta \\
x \cdot \sin \theta+y \cdot \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Therefore,

$$
P^{\prime}=R \cdot P
$$

R is called Rotation
Matrix

Scaling - 2D

- Consider the dimensions of an object, either Expand or compress
- Scaling factors for XY Plane (2D) are defined as s_{x} and s_{y}. magnification if $s_{x}\left(\right.$ or $\left.s_{y}\right)>1$
reduction if $s_{x}\left(\right.$ or $\left.s_{y}\right)<1$

$$
x^{\prime}=s_{x} \cdot x \quad, \quad y^{\prime}=s_{y} \cdot y
$$

In matrix form where S is scaling matrix.

$$
\left.\begin{array}{ccc}
P^{\prime} & = & S \\
\Downarrow & \Downarrow & \Downarrow \\
\Downarrow \\
y \cdot s_{y}
\end{array}\right]=\left[\begin{array}{cc}
x \cdot s_{x} \\
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Scaling - 2D

- After scaling,
- Centroid can be changed and new object will be located at a different position relative to origin
scale factors, $s_{x}=2, s_{y}=1 / 2$

Types of Scaling:
Differential (sx != sy)
Uniform (sx = sy)

Homogeneous Co-ordinates

- Non-homogeneously: In matrix form, translation, scaling and rotation are defined as:
- translation: $\mathrm{P}^{\prime}=\mathrm{P}+\mathrm{T}, \quad \rightarrow 2 \times 2$ Matrix form
- Scale: $\mathrm{P}^{\prime}=\mathrm{S} \cdot \mathrm{P} \quad \rightarrow 3 \times 3$ Matrix form
- Rotate: $\mathrm{P}^{\prime}=\mathrm{R} \cdot \mathrm{P} \quad \rightarrow 3 \times 3$ Matrix form
- Composition Transformations (??)---- more than one transformations at a time
- But translation not expressed as a matrix multiplication method, thus difficult to determine
- Homogeneously: Allow all three transformation by the multiplication of 3×3 matrices
- Each Cartesian position (x, y) is represented by a triple $\left(x_{h}, y_{h}\right.$, h), where,

$$
x=\frac{x_{h}}{h} \quad y=\frac{y_{h}}{h}
$$

Homogeneous Co-ordinates

- h can have any non zero value, better to use $h=1$
- allows all transformation eq as matrix multiplication, and
1)Transformation matrices for translation

$$
x^{\prime}=x+t_{x}, \quad y^{\prime}=y+t_{y}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] *\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
T_{\left(t_{x}, t_{y}\right)}
\end{gathered}
$$

Homogeneous Co-ordinates

2) Transformation matrices for rotation

$$
\begin{gathered}
x^{\prime}=x \cdot \cos \theta-y \cdot \sin \theta \quad, \quad y^{\prime}=x \cdot \sin \theta+y \cdot \cos \theta \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] *\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
R_{(\theta)}
\end{gathered}
$$

3) Transformation matrices for Scaling

$$
x^{\prime}=s_{x} \cdot x \quad, \quad y^{\prime}=s_{y} \cdot y
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{x} & 0 \\
0 & 0 & 1
\end{array}\right] *\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]} \\
S_{\left(s_{x}, s_{y}\right)}
\end{gathered}
$$

Mirror Reflection

Reflection about X - axis

$$
x^{\prime}=x \quad y^{\prime}=-y
$$

$$
M_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Reflection about Y - axis

$$
x^{\prime}=-x \quad y^{\prime}=y
$$

$M_{y}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Shearing Transformation

$$
S H_{x}=\left[\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
S H_{y}=\left[\begin{array}{lll}
1 & 0 & 0 \\
b & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
S H_{x y}=\left[\begin{array}{lll}
1 & a & 0 \\
b & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

unit cube

Sheared in X direction

Sheared in Y direction

Sheared in both X and Y direction

Composite Transformation

$>$ Composite transformation matrix based on the concatenation of transformation matrices
\checkmark It leads to different results if the change in the order of transformation. Thus, the matrix, $[A] \cdot[B] \neq[B] \cdot[A]$
$>$ For example, in order to rotate an object around an arbitrary point $P(h, k)$:

1) Translate $P(h, k)$ to the origin.
2) Rotate it around the origin.
3) To finish, translate the center of rotation back as it was previously.

General Pivot point, P(h,k), Rotation of $\theta: R_{\theta, p}$

Step 1: Translate $A(h, k)$ to origin
Step 2: Rotate θ w.r.t to origin Step 3: Translate $(0,0)$ to $A(h, k)$

$$
\mathbf{R}_{\theta, \mathrm{P}}=\mathbf{T}(\mathrm{h}, \mathbf{k}) * \mathbf{R}_{\theta} * \mathrm{~T}(-\mathrm{h},-\mathrm{k})
$$

$$
\mathrm{B}^{3}\left(\mathrm{x}^{\prime}+\mathrm{h}, \mathrm{y}^{\prime}+\mathrm{k}\right)
$$

Fixed point $P(h, k)$ Scaling : $S_{s x, s y, p}$

Step 1: Translate $P(h, k)$ to origin
Step 2: Scale $S\left(\mathrm{~s}_{\mathrm{x}}, \mathrm{S}_{\mathrm{y}}\right)$ w.r.t origin
Step 3: Translate $(0,0)$ to $P(h, k)$

$$
S_{s x, s y, P}=T(h, k) * S\left(s_{x}, S_{y}\right) * T(-h,-k)
$$

