

Computer Graphics

Two-Dimensional Transformations

Edited by Dr. Md. Manjur Ahmed Faculty of Computer Systems and Software Engineering manjur@ump.edu.my

Chapter Description

- Aims
 - Basic of Computer Graphics.
- Expected Outcomes
 - Understand the basic concept of computer graphics. (CO1: Knowledge)
 - Ability to use the computer graphics technology. (CO1: Knowledge)
- References
 - Dr. Masudul Ahsan, Dept. Of CSE, Khulna University of Engineering and Technology (KUET), Bangladesh.
 - Computer Graphics by Zhigang Xiang, Schaum's Outlines.
 - Donald Hearn & M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.

Modeling Transformations

- Simulate the manipulation of objects in space
- Two contrary points of view for describing object
 - Geometric transformation
 - Relative to a stationary coordinate system
 - Changes in orientation, size and shape
 - Coordinate Transformation Keeping the object stationary while coordinate system is transformed with respect to the stationary object.

Geometric transformation

- Basic Transformations
 - Translation
 - Rotation
 - Scaling
 - Shear
 - Mirror reflection

Translation – 2D Transformation (about the Origin)

✓ Considering distance and direction

• Let, new point P'(x',y') is found by adding translation distance (t_x,t_y) to P(x,y). Then displacement vector is

$$x' = x + t_x$$
 and $y' = y + t_y - - - - - (1)$

Let's column vector

$$P = \begin{bmatrix} x \\ y \end{bmatrix} \quad P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \quad T = \begin{bmatrix} t \\ t \\ y \end{bmatrix}$$

Therefore, Eqn (1) can be rewritten as P' = P + T

Rotation – 2D

- Object is rotated along a circular path using rotation angle (θ)
 - Rotation angle (θ)
 - Counter clockwise, + θ
 - Clockwise, θ
 - Consider center (0,0) of rotation means that origin as pivot point

Rotation – 2D $P = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r \cos \phi \\ r \sin \phi \end{bmatrix}$

$$P' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} r\cos(\phi + \theta) \\ r\sin(\phi + \theta) \end{bmatrix}$$

$$\begin{array}{c|c} y \\ \uparrow \\ \hline \\ (\theta + \theta) \\ \text{uis } \\ \downarrow \\ \hline \\ \phi \\ \hline \\ r \cos(\phi + \theta) \\ \hline \\ r \cos(\phi + \theta) \\ \hline \\ r \cos(\phi - \phi) \\ \end{array} \right) X$$

$$= \begin{bmatrix} r\cos\phi\cos\theta - r\sin\phi\sin\theta\\ r\cos\phi\sin\theta + r\sin\phi\cos\theta \end{bmatrix}$$

$$= \begin{bmatrix} x\cos\theta - y\sin\theta\\ x\sin\theta + y\cos\theta \end{bmatrix}$$

Rotation – 2D

Matrix form

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} x \cdot \cos \theta - y \cdot \sin \theta\\ x \cdot \sin \theta + y \cdot \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x\\y \end{bmatrix}$$

Therefore,

$$P' = R \cdot P$$

R is called Rotation Matrix

Scaling – 2D

- Consider the dimensions of an object, either Expand or compress
- Scaling factors for XY Plane (2D) are defined as s_x and s_y . magnification if $s_x(\text{or } s_y) > 1$ reduction if $s_x(\text{or } s_y) < 1$

$$x' = s_x \cdot x \quad , \quad y' = s_y \cdot y$$

In matrix form where S is scaling matrix.

Scaling – 2D

- After scaling,
 - Centroid can be changed and new object will be located at a different position relative to origin

Types of Scaling: Differential (sx != sy) Uniform (sx = sy)

Homogeneous Co-ordinates

- Non-homogeneously: In matrix form, translation, scaling and rotation are defined as:
 - translation: P' = P + T, $\rightarrow 2 \times 2$ Matrix form
 - Scale: P' = S \cdot P \rightarrow 3×3 Matrix form
 - Rotate: P' = $R \cdot P$ $\rightarrow 3 \times 3$ Matrix form
- **Composition Transformations (??)----** more than one transformations at a time
 - But translation not expressed as a matrix multiplication method, thus difficult to determine
- Homogeneously: Allow all three transformation by the multiplication of 3×3 matrices
- Each Cartesian position (x,y) is represented by a triple (x_h, y_h, h), where,

$$x = \frac{x_h}{h} \qquad \qquad y = \frac{y_h}{h}$$

Homogeneous Co-ordinates

- h can have any non zero value, better to use h = 1
- allows all transformation eq as matrix multiplication, and

1)Transformation matrices for translation

$$x' = x + t_x , \quad y' = y + t_y$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$T_{(t_x, t_y)}$$

Homogeneous Co-ordinates

2) Transformation matrices for rotation

$$x' = x \cdot \cos \theta - y \cdot \sin \theta , \quad y' = x \cdot \sin \theta + y \cdot \cos \theta$$
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

3) Transformation matrices for Scaling $x' = s_x \cdot x \quad , \quad y' = s_y \cdot y$ $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_x & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Mirror Reflection

Reflection about X - axis

$$x' = x \quad y' = -y$$
$$M_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Reflection about Y - axis x' = -x y' = y

$$M_{y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Shearing Transformation

Composite Transformation

- Composite transformation matrix based on the concatenation of transformation matrices
 - ✓ It leads to different results if the change in the order of transformation. Thus, the matrix, [A] · [B] ≠ [B] · [A]
- For example, in order to rotate an object around an arbitrary point P(h,k):
 - 1) Translate P(h,k) to the origin.
 - 2) Rotate it around the origin.

3) To finish, translate the center of rotation back as it was previously.

