Computer Graphics

Introduction to Computer Graphics

Edited by
Dr. Md. Manjur Ahmed
Dr. Suryanti Awang
Faculty of Computer Systems and Software Engineering
manjur@ump.edu.my

Chapter Description

- Aims
- Basic of Computer Graphics.
- Expected Outcomes
- Understand the basic concept of computer graphics. (CO1: Knowledge)
- Ability to use the computer graphics technology. (CO1: Knowledge)
- References
- Computer Graphics by Zhigang Xiang, Schaum's Outlines.
- Donald Hearn \& M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.

Circle Drawing

Simple way to start

Equation of a circle:

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

If we solve for y :

$$
y=y_{0} \pm \sqrt{r^{2}-\left(x-x_{0}\right)^{2}}
$$

Sample C codes:

```
void SIMPLE_CIRCLE(int X_center, int Y_center, int radius_R, Color c) {
    int x, y, r2;
    r2 = radius_R * radius_R;
    for (x = - radius_R; x <= radius_R; x++) {
        y = (int)(sqrt(r2 - x*x) + 0.5);
        setPixel((X_center + x), (Y_center + y, c));
        setPixel((X_center + x), (Y_center - y, c));
    }
}
```


Simple way to start "uncertainty"

> In certain cases, the slope of the line tangent is greater than 1. Therefore, tangent > 1 shows the uncertainty of this algorithm.
>Looping (or stepping) using x won't work here.

Reference: Computer Graphics: Principles and Practice by James D. Foley and et.al.

Circles symmetrical nature

> To solve the issue "slope of the tangent"
> Let's take the advantage of the circle's symmetric nature.
> Consider both positive and negative values for y (or x).

Midpoint Circle Algorithm

- Consider current point is at (x_{k}, y_{k})
- Next point: $\left(x_{k}+1, y_{k}\right)$, or $\left(x_{k}+1\right.$, $\left.y_{k}-1\right)$?
- Take the midpoint: $\left(x_{k}+1, \mathrm{y}_{\mathrm{k}}-0.5\right)$
-Use the discriminator function to decide:

$$
f(x, y)=x^{2}+y^{2}-r^{2}
$$

Using the circle discriminator

Based on the value return:

By using the midpoint between 2 pixel candidates, we can introduce a decision parameter, p_{k}, to decide which to plot next:
1)

$$
\begin{aligned}
p_{k} & =f\left(x_{k}+1, y_{k}-0.5\right) \\
& =\left(x_{k}+1\right)^{2}+\left(y_{k}-0.5\right)^{2}-r^{2}
\end{aligned}
$$

2 and 3)

If the current point is inside the
 circle

If $p_{k}<0$
We want to know $f(x+1, y)$ so we can update p :

$$
\begin{gathered}
\mathrm{f}(\mathrm{x}+1, \mathrm{y})=(\mathrm{x}+1)^{2}+\mathrm{y}^{2}-\mathrm{r}^{2} \\
\mathrm{f}(\mathrm{x}+1, \mathrm{y})=\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)+\mathrm{y}^{2}-\mathrm{r}^{2} \\
\mathrm{f}(\mathrm{x}+1, \mathrm{y})=\mathrm{f}(\mathrm{x}, \mathrm{y})+2 \mathrm{x}+1 \\
\boldsymbol{P}_{\mathrm{k}+1} \quad \boldsymbol{P}_{\boldsymbol{k}}
\end{gathered}
$$

So we increment:

$$
p+=2 x+1
$$

If the current point is outside the
 circle

If $p_{k}>0$
Let's drop the subscript for a while...
We want to know $f(x+1, y-1)$ so we can update p :

$$
\begin{gathered}
\mathrm{f}(\mathrm{x}+1, \mathrm{y}-1)=(\mathrm{x}+1)^{2}+(\mathrm{y}-1)^{2}-\mathrm{r}^{2} \\
\mathrm{f}(\mathrm{x}+1, \mathrm{y}-1)=\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)+\left(\mathrm{y}^{2}-2 \mathrm{y}+2\right)-\mathrm{r}^{2} \\
\mathrm{f}(\mathrm{x}+1, \mathrm{y}-1)=\mathrm{f}(\mathrm{x}, \mathrm{y})+2 \mathrm{x}-2 \mathrm{y}+2 \\
\boldsymbol{P}_{\mathrm{k}+1} \quad \boldsymbol{P}_{\boldsymbol{k}}
\end{gathered}
$$

And we increment:

$$
p+=2 x-2 y+2
$$

Where to begin?

We can determine where to go next, how do we start?
We have a variety of choices for our first point on the circle, but we've designed the increments to work from ($0, \mathrm{r}$).

Calculate initial value of p_{0} by evaluating:

$$
\begin{gathered}
\mathrm{p}_{0}=\mathrm{f}(1, \mathrm{r}-0.5)=1^{2}+(\mathrm{r}-0.5)^{2}-\mathrm{r}^{2} \\
\mathrm{p}_{0}=\mathrm{f}(1, \mathrm{r}-0.5)=1+\left(\mathrm{r}^{2}-\mathrm{r}+0.25\right)-\mathrm{r}^{2} \\
\mathrm{P}_{0}=1.25-\mathrm{r}
\end{gathered}
$$

Midpoint circle algorithm

Homework

Ellipse Drawing

Equation

General equation of an ellipse:
$\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}}+\sqrt{\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}}=$ constant

$$
d_{1}+d_{2}=\text { constant }
$$

Or,

$$
\left(\frac{x-x_{c}}{r_{x}}\right)^{2}+\left(\frac{y-y_{c}}{r_{y}}\right)^{2}=1
$$

Symmetry

An ellipse only has a 2-way symmetry.

Equation of an ellipse revisited

Consider an ellipse centered at the origin:

$$
\left(\frac{x}{r_{x}}\right)^{2}+\left(\frac{y}{r_{y}}\right)^{2}=1
$$

What is the discriminator function?

$$
f_{e}(x, y)=r_{y}^{2} x^{2}+r_{x}^{2} y^{2}-r_{x}^{2} r_{y}^{2}
$$

...and its properties:
$\mathrm{f}_{\mathrm{e}}(\mathrm{x}, \mathrm{y})<0$ for a point inside the ellipse
$\mathrm{f}_{\mathrm{e}}(\mathrm{x}, \mathrm{y})>0$ for a point outside the ellipse
$f_{e}(x, y)=0$ for a point on the ellipse

Midpoint Ellipse Algorithm

- Ellipse is different from circle.
- Similar approach with circle, different is sampling direction.
- Region 1:
- Sampling is at x direction
- Choose between $\left(x_{k}+1, y_{k}\right)$, or ($\mathrm{x}_{\mathrm{k}}+1, \mathrm{y}_{\mathrm{k}}-1$)
- Midpoint: $\left(x_{k}+1, y_{k}-0.5\right)$
- Region 2:
- Sampling is at y direction
- Choose between ($x_{k}, y_{k}-1$), or ($\mathrm{x}_{\mathrm{k}}+1, \mathrm{y}_{\mathrm{k}}-1$)
- Midpoint: $\left(\mathrm{x}_{\mathrm{k}}+0.5, \mathrm{y}_{\mathrm{k}}-1\right)$

