For updated version, please click on http://ocw.ump.edu.my

Computer Graphics

Introduction to Computer Graphics

Edited by Dr. Md. Manjur Ahmed Dr. Suryanti Awang Faculty of Computer Systems and Software Engineering manjur@ump.edu.my

Chapter Description

- Aims
 - Basic of Computer Graphics.
- Expected Outcomes
 - Understand the basic concept of computer graphics. (CO1: Knowledge)
 - Ability to use the computer graphics technology. (CO1: Knowledge)
- References
 - Computer Graphics by Zhigang Xiang, Schaum's Outlines.
 - Donald Hearn & M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.

Circle Drawing

Simple way to start

Equation of a circle:

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$
$$y = y_0 \pm \sqrt{r^2 - (x - x_0)^2}$$

If we solve for *y*:

```
Sample C codes:
void SIMPLE_CIRCLE(int X_center, int Y_center, int radius_R, Color c) {
    int x, y, r2;
    r2 = radius_R * radius_R;
    for (x = - radius_R; x <= radius_R; x++) {
        y = (int)(sqrt(r2 - x*x) + 0.5);
        setPixel((X_center + x), (Y_center + y, c));
        setPixel((X_center + x), (Y_center - y, c));
    }
```

Simple way to start "uncertainty"

- In certain cases, the slope of the line tangent is greater than 1. Therefore, tangent > 1 shows the uncertainty of this algorithm.
- Looping (or stepping) using x won't work here.

Reference: Computer Graphics: Principles and Practice by James D. Foley and et.al.

Circles symmetrical nature

- To solve the issue "slope of the tangent"
- Let's take the advantage of the circle's symmetric nature.
- Consider both positive and negative values for y (or x).

Midpoint Circle Algorithm

- Consider current point is at (x_k, y_k)
- Next point: (x_k+1, y_k), or (x_k+1, y_k), or (x_k+1, y_k-1)?
- Take the midpoint: $(x_k+1, y_k-0.5)$

•Use the discriminator function to decide:

$$f(x, y) = x^2 + y^2 - r^2$$

Using the circle discriminator

Based on the value return:

$$f(x, y) \longrightarrow = 0;$$

>0;

inside the circle

- on the circle path
- outside the circle

By using the midpoint between 2 pixel candidates, we can introduce a decision parameter, p_k , to decide which to plot next:

1)
$$p_k = f(x_k + 1, y_k - 0.5)$$

= $(x_k + 1)^2 + (y_k - 0.5)^2 - r^2$

2 and 3)

 p_k

-ve: midpoint is inside the circle; plot (x_k+1, y_k)

+ve: midpoint is outside the circle; plot (x_k+1, y_k-1)

If the current point is inside the circle ...

If $p_k < 0$

We want to know f(x+1, y) so we can update p:

$$f(x+1, y) = (x + 1)^{2} + y^{2} - r^{2}$$

$$f(x+1, y) = (x^{2} + 2x + 1) + y^{2} - r^{2}$$

$$f(x+1, y) = f(x, y) + 2x + 1$$

$$P_{k+1} \qquad P_{k}$$

So we increment:

$$p += 2x + 1$$

If the current point is outside the circle ...

If $p_k > 0$

Let's drop the subscript for a while...

We want to know f(x+1, y-1) so we can update p:

$$f(x+1, y-1) = (x + 1)^{2} + (y - 1)^{2} - r^{2}$$

$$f(x+1, y-1) = (x^{2} + 2x + 1) + (y^{2} - 2y + 2) - r^{2}$$

$$f(x+1, y-1) = f(x, y) + 2x - 2y + 2$$

$$P_{k+1} \qquad P_{k}$$
And we increment:

p += 2x - 2y + 2

Where to begin?

We can determine where to go next, how do we start?

We have a variety of choices for our first point on the circle, but we've designed the increments to work from (0, r).

Calculate initial value of p_0 by evaluating:

$$p_0 = f(1, r-0.5) = 1^2 + (r - 0.5)^2 - r^2$$
$$p_0 = f(1, r-0.5) = 1 + (r^2 - r + 0.25) - r^2$$
$$p_0 = 1.25 - r$$

**We want to use integer calculation; you can round p₀

Midpoint circle algorithm

Homework

Ellipse Drawing

Equation

Symmetry

An ellipse only has a 2-way symmetry.

Equation of an ellipse revisited

Consider an ellipse centered at the origin:

$$\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 = 1$$

What is the discriminator function?

$$f_e(x, y) = r_y^2 x^2 + r_x^2 y^2 - r_x^2 r_y^2$$

...and its properties:

 $\begin{array}{l} f_e(x,y) < 0 \text{ for a point inside the ellipse} \\ f_e(x,y) > 0 \text{ for a point outside the ellipse} \\ f_e(x,y) = 0 \text{ for a point on the ellipse} \end{array}$

Midpoint Ellipse Algorithm

- Ellipse is different from circle.
- Similar approach with circle, different is sampling direction.
- Region 1:
 - Sampling is at x direction
 - Choose between (x_k+1, y_k) , or (x_k+1, y_k-1)
 - Midpoint: $(x_k+1, y_k-0.5)$
- Region 2:
 - Sampling is at y direction
 - Choose between (x_k, y_k-1) , or (x_k+1, y_k-1)
 - Midpoint: $(x_k+0.5, y_k-1)$

