Computer Graphics

Introduction to Computer Graphics

Edited by
Dr. Md. Manjur Ahmed
Dr. Suryanti Awang
Faculty of Computer Systems and Software Engineering
manjur@ump.edu.my

Chapter Description

- Aims
- Basic of Computer Graphics.
- Expected Outcomes
- Understand the basic concept of computer graphics. (CO1: Knowledge)
- Ability to use the computer graphics technology. (CO1: Knowledge)
- References
- Computer Graphics by Zhigang Xiang, Schaum's Outlines.
- Donald Hearn \& M. Pauline Baker, Computer Graphics with OpenGL, 4th Edition, Boston : Addison Wesley, 2011.

COORDINATES SYSTEM

Most windowing systems:

OpenGL framebuffer:

COORDINATES SYSTEM

Does it matter? No, we just need to be aware of the difference:
Where a pixel in the framebuffer will show up on screen?
How do we get the pixel address under the mouse pointer?

Could some other display library have its framebuffer lay-out match your windowing system? Absolutely. Many do.

What if all we never directly displayed our framebuffer, but wrote it out as an image for later display?

Virtually all image formats use screen-space coordinates.

RASTER DISPLAY

> Represented by a 2D array of positions called pixels

Refi
Zooming in on an image made up of pixels
> pixel at location (0,0), lower left corner
> Color frequently requires 1 byte per channel (three color channels per pixel namely $\mathrm{R}=$ red, $\mathrm{G}=$ green, $\mathrm{B}=$ blue).

RASTER DISPLAY

$>$ Frame Buffer: ~ is stored the color data, often called an image map or bitmap.

```
setpixel(x, y, color)
Sets the pixel at position (x,y) to the given color.
getpixel(x, y)
Gets the color at the pixel at position (x,y).
```

Scan conversion: convert to basic and low level objects into corresponding pixel map depictions.

OUTPUT PRIMITIVES

- A picture consists of a complex objects
- Come from basic geometric structures called Object Primitives

Points and Lines

- A line can be completed by calculating the line path between 2 endpoints. Points and Lines

Simple Line

- A point on the screen with position (x, y): plot a pixel with corresponding position
- Sample code:

$$
\text { SetPixel }(x, y) \rightarrow \text { a function in windows.h }
$$

Simple Line

Raster-scan devices address discrete pixels

The endpoints and intermediate points must be set individually

The points are calculated from the slope-intercept equation

Line drawing is a fundamental operation on which many other routines are built

Equation of a line

$$
\begin{aligned}
y & =m \cdot \boldsymbol{x}+\boldsymbol{c} \\
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
c & =y_{1}-m \cdot x_{1}
\end{aligned}
$$

- Based on eq. and positions of 2 endpoints ($\left.x^{1} 1, y^{1} 1\right)$, (x_{2}, y^{2}):
- Therefore,

$$
\begin{aligned}
& m=\frac{y_{2}-\text { int }}{x_{2}-} \begin{array}{l}
\text { float } m, y \\
m=(y 1-y 0) /(x 1-x 0) \\
\Delta y=m \\
\text { for }(x=x 0 ; x<=x 1 ;++x) \\
y=m *(x-x 0)+y^{0}
\end{array}
\end{aligned}
$$

> and

$$
\left.\Delta x=\frac{\Delta}{r}\right\} \quad \text { setpixel }(x, \text { round }(y), \text { linecolor) }
$$

Example

Digital Differential Analyzer (DDA)

Sample at unit x :

$$
\begin{gathered}
x_{k+1}=x_{k}+\Delta x \\
=x_{k}+1
\end{gathered}
$$

Corresponding y pos.:

$$
\begin{aligned}
& y_{k+1}=y_{k}+\Delta y \\
& =y_{k}+m \cdot \Delta x \\
& =y_{k}+m \cdot(1)
\end{aligned}
$$

DDA Example

Sample at unit x :

$$
\begin{gathered}
x_{k+1}=x_{k}+\Delta x \\
=x_{k}+1
\end{gathered}
$$

Corresponding y pos.:

$$
\begin{aligned}
& y_{k+1}=y_{k}+\Delta y \\
& \quad=y_{k}+m \cdot \Delta x \\
& =y_{k}+m \cdot(1)
\end{aligned}
$$

DDA Example

Sample at unit x :

$$
\begin{gathered}
x_{k+1}=x_{k}+\Delta x \\
=x_{k}+1
\end{gathered}
$$

Corresponding y pos.:

$$
\begin{array}{r}
y_{k+1}=y_{k}+\Delta y \\
=y_{k}+m \cdot \Delta x \\
=y_{k}+m \cdot(1)
\end{array}
$$

DDA Example

Sample at unit x :

$$
\begin{gathered}
x_{k+1}=x_{k}+\Delta x \\
=x_{k}+1
\end{gathered}
$$

Corresponding y pos.:

$$
\begin{aligned}
& y_{k+1}=y_{k}+\Delta y \\
& =y_{k}+m \cdot \Delta x \\
& =y_{k}+m \cdot(1)
\end{aligned}
$$

DDA Example

Sample at unit x :

$$
\begin{gathered}
x_{k+1}=x_{k}+\Delta x \\
=x_{k}+1
\end{gathered}
$$

Corresponding y pos.:

$$
\begin{array}{r}
y_{k+1}=y_{k}+\Delta y \\
=y_{k}+m \cdot \Delta x \\
=y_{k}+m \cdot(1)
\end{array}
$$

DDA Example

Sample at unit x :

$$
\begin{gathered}
x_{k+1}=x_{k}+\Delta x \\
=x_{k}+1
\end{gathered}
$$

Corresponding y pos.:

$$
\begin{array}{r}
y_{k+1}=y_{k}+\Delta y \\
=y_{k}+m \cdot \Delta x \\
=y_{k}+m \cdot(1)
\end{array}
$$

DDA Example

Sample at unit x :

$$
\begin{gathered}
x_{k+1}=x_{k}+\Delta x \\
=x_{k}+1
\end{gathered}
$$

Corresponding y pos.:

$$
\begin{aligned}
& y_{k+1}=y_{k}+\Delta y \\
& =y_{k}+m \cdot \Delta x \\
& =y_{k}+m \cdot(1)
\end{aligned}
$$

Consider endpoints: P1(0,0), P2(7,4)

DDA Example

Let $\mathrm{P}_{1}(2,2), \mathrm{P}_{2}(7,5)$

Calculate the points that made up the line $\mathrm{P}_{1} \mathrm{P}_{2}$
First work out m and c :

$$
m=\frac{5-2}{7-2}=\frac{3}{5} \quad c=2-\frac{3}{5} * 2=\frac{4}{5}
$$

Now work for each x value work out the y value:
$y(3)=\frac{3}{5} * 3+\frac{4}{5}=2 \frac{3}{5} \approx 3$
$y(4)=\frac{3}{5} * 4+\frac{4}{5}=3 \frac{1}{5} \approx 3$
$y(5)=\frac{3}{5} * 5+\frac{4}{5}=3 \frac{4}{5} \approx 4$
$y(6)=\frac{3}{5} * 6+\frac{4}{5}=4 \frac{2}{5} \approx 4$

DDA in C

```
#include *device.h*
Gdefine ROUND (a) ((int) (a+0.5))
void lineDDA (int xa, int ya, int xb, int yb)
{
    int dx = xb - xa, dy = yb - ya, steps, k;
    float xIncrement, yIncrement, x = xa, y = ya;
    if (abs (dx) > abs (dy)) steps = abs (dx);
    else steps = abs dy);
    xIncrement = dx ; (float) steps;
    yIncrement = dy ; (float) steps;
    setPixel (ROUND(x), ROUND(y));
    for (k=0; k<steps; k++) (
        x += xIncrement;
        y += yIncrement;
        setPixel (ROUND(x), ROUND(y));
    )
)
```


DDA Exercise

1. Consider endpoints:
$\mathrm{P}_{1}(0,0), \mathrm{P}_{2}(6,4)$
Calculate the points that made up the line $\mathrm{P}_{1} \mathrm{P}_{2}$
2. Now, consider endpoints:
$\mathrm{P}_{1}(0,0), \mathrm{P}_{2}(4,6)$
Calculate the points that made up the line $P_{1} P_{2}$

Limitation of DDA

Not identify the positions if $\mathrm{x} 1<\mathrm{x} 0$. Answer: Shift the order of the points if $\mathrm{x} 1<\mathrm{x} 0$.

Bresenham's line drawing algorithm

Consider the first condition:

$$
m<1, \quad m \text { has a positive value }
$$

Bresenham's increments \mathbf{x} by $\mathbf{1}$ and \mathbf{y} by 0 or $\mathbf{1}$
This makes sense for our lines, we want them to be continuous
If the magnitude of the slope were more than 1 , we'd swap $x \& y$

Bresenham's line drawing algorithm

Algorithm for $|\mathrm{m}|<1$:

1. Take $\mathbf{2}$ endpoints as input. Assign $\left(x_{1}, y_{1}\right)=$ first end point.
2. Load to frame buffer and plot the first point in display.
3. Compute constant values of $\Delta x, \Delta y, 2 \Delta y, 2 \Delta y-2 \Delta x$. Use initial value of decision parameter:

$$
p_{1}=2 \Delta y-\Delta x
$$

4. Start form $t=1$, for each X_{t} along the line, test:

$$
\begin{aligned}
& \text { if } p_{t}<0 \text {, plot }\left(x_{t+1}, y_{t}\right) \text { and } p_{t+1}=p_{t}+2 \Delta y \\
& \text { else plot }\left(x_{t+1}, y_{t+1}\right) \text { and } p_{t+1}=p_{t}+2 \Delta y-2 \Delta x
\end{aligned}
$$

5. Continue step $4 \Delta x$ times.

Example

Digitize the line with endpoints $(20,10)$ and $(25,13)$.
Plot the line by determining the pixel positions.

$y=m x+c$

t	p_{t}	$\left(x_{t+1}, y_{t+1}\right)$
$\mathbf{1}$		
2		
3		
5		

Exercise

Calculate pixel positions that made up the line connecting endpoints: $(12,10)$ and $(17,14)$.

$$
\begin{aligned}
& \text { 1. }\left(x_{1}, y_{1}\right)=\text { ? } \\
& \text { 2. } \Delta x=\text { ?, } \Delta y=\text { ?, } 2 \Delta y=\text { ?, } 2 \Delta y-2 \Delta x=\text { ? } \\
& \text { 3. } p_{1}=2 \Delta y-\Delta x=\text { ? }
\end{aligned}
$$

t	p_{t}	$\left(x_{t+1}, y_{t+1}\right)$

Exercise

Calculate pixel positions that made up the line connecting endpoints: $(12,10)$ and $(17,14)$.

1. $\left(x_{1}, y_{1}\right)=(12,10)$
2. $\Delta x=5, \Delta y=4,2 \Delta y=8,2 \Delta y-2 \Delta x=-2$
3. $p_{1}=2 \Delta y-\Delta x=3$

k	p_{k}	$\left(x_{k+1}, y_{k+1}\right)$
$\mathbf{1}$	3	
2		
3		

Circle Drawing

Simple way to start

Equation of a circle:

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

If we solve for y :

$$
y=y_{0} \pm \sqrt{r^{2}-\left(x-x_{0}\right)^{2}}
$$

```
Sample C codes:
void SIMPLE_CIRCLE(int X_center, int Y_center, int radius_R, Color c) {
    int x, y, r2;
    r2 = radius_R * radius_R;
    for (x = - radius_R; x <= radius_R; x++) {
        y = (int)(sqrt(r2 - x*x) + 0.5);
        setPixel((X_center + x), (Y_center + y, c));
        setPixel((X_center + x), (Y_center - y, c));
    }
}
```


Simple way to start "uncertainty"

> In certain cases, the slope of the line tangent is greater than 1. Therefore, tangent > 1 shows the uncertainty of this algorithm.
>Looping (or stepping) using x won't work here.

Reference: Computer Graphics: Principles and Practice by James D. Foley and et.al.

Circles symmetrical nature

> To solve the issue "slope of the tangent"
> Let's take the advantage of the circle's symmetric nature.
> Consider both positive and negative values for y (or x).

Midpoint Circle Algorithm

- Consider current point is at (x_{k}, y_{k})
- Next point: $\left(x_{k}+1, y_{k}\right)$, or $\left(x_{k}+1\right.$, $\left.y_{k}-1\right)$?
- Take the midpoint: $\left(x_{k}+1, \mathrm{y}_{\mathrm{k}}-0.5\right)$
-Use the discriminator function to decide:

$$
f(x, y)=x^{2}+y^{2}-r^{2}
$$

Using the circle discriminator

Based on the value return:

By using the midpoint between 2 pixel candidates, we can introduce a decision parameter, p_{k}, to decide which to plot next:
1)

$$
\begin{aligned}
p_{k} & =f\left(x_{k}+1, y_{k}-0.5\right) \\
& =\left(x_{k}+1\right)^{2}+\left(y_{k}-0.5\right)^{2}-r^{2}
\end{aligned}
$$

2 and 3)

If the current point is inside the
 circle

If $p_{k}<0$
We want to know $f(x+1, y)$ so we can update p :

$$
\begin{gathered}
\mathrm{f}(\mathrm{x}+1, \mathrm{y})=(\mathrm{x}+1)^{2}+\mathrm{y}^{2}-\mathrm{r}^{2} \\
\mathrm{f}(\mathrm{x}+1, \mathrm{y})=\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)+\mathrm{y}^{2}-\mathrm{r}^{2} \\
\mathrm{f}(\mathrm{x}+1, \mathrm{y})=\mathrm{f}(\mathrm{x}, \mathrm{y})+2 \mathrm{x}+1 \\
\boldsymbol{P}_{\mathrm{k}+1} \quad \boldsymbol{P}_{\boldsymbol{k}}
\end{gathered}
$$

So we increment:

$$
p+=2 x+1
$$

If the current point is outside the
 circle

If $p_{k}>0$
Let's drop the subscript for a while...
We want to know $f(x+1, y-1)$ so we can update p :

$$
\begin{gathered}
\mathrm{f}(\mathrm{x}+1, \mathrm{y}-1)=(\mathrm{x}+1)^{2}+(\mathrm{y}-1)^{2}-\mathrm{r}^{2} \\
\mathrm{f}(\mathrm{x}+1, \mathrm{y}-1)=\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)+\left(\mathrm{y}^{2}-2 \mathrm{y}+2\right)-\mathrm{r}^{2} \\
\mathrm{f}(\mathrm{x}+1, \mathrm{y}-1)=\mathrm{f}(\mathrm{x}, \mathrm{y})+2 \mathrm{x}-2 \mathrm{y}+2 \\
\boldsymbol{P}_{\mathrm{k}+1} \quad \boldsymbol{P}_{\boldsymbol{k}}
\end{gathered}
$$

And we increment:

$$
p+=2 x-2 y+2
$$

Where to begin?

We can determine where to go next, how do we start?
We have a variety of choices for our first point on the circle, but we've designed the increments to work from ($0, \mathrm{r}$).

Calculate initial value of p_{0} by evaluating:

$$
\begin{gathered}
\mathrm{p}_{0}=\mathrm{f}(1, \mathrm{r}-0.5)=1^{2}+(\mathrm{r}-0.5)^{2}-\mathrm{r}^{2} \\
\mathrm{p}_{0}=\mathrm{f}(1, \mathrm{r}-0.5)=1+\left(\mathrm{r}^{2}-\mathrm{r}+0.25\right)-\mathrm{r}^{2} \\
\mathrm{P}_{0}=1.25-\mathrm{r}
\end{gathered}
$$

Midpoint circle algorithm

Homework

Ellipse Drawing

Equation

General equation of an ellipse:
$\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}}+\sqrt{\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}}=$ constant

$$
d_{1}+d_{2}=\text { constant }
$$

Or,

$$
\left(\frac{x-x_{c}}{r_{x}}\right)^{2}+\left(\frac{y-y_{c}}{r_{y}}\right)^{2}=1
$$

Symmetry

An ellipse only has a 2-way symmetry.

Equation of an ellipse revisited

Consider an ellipse centered at the origin:

$$
\left(\frac{x}{r_{x}}\right)^{2}+\left(\frac{y}{r_{y}}\right)^{2}=1
$$

What is the discriminator function?

$$
f_{e}(x, y)=r_{y}^{2} x^{2}+r_{x}^{2} y^{2}-r_{x}^{2} r_{y}^{2}
$$

...and its properties:
$\mathrm{f}_{\mathrm{e}}(\mathrm{x}, \mathrm{y})<0$ for a point inside the ellipse
$\mathrm{f}_{\mathrm{e}}(\mathrm{x}, \mathrm{y})>0$ for a point outside the ellipse
$f_{e}(x, y)=0$ for a point on the ellipse

Midpoint Ellipse Algorithm

- Ellipse is different from circle.
- Similar approach with circle, different is sampling direction.
- Region 1:
- Sampling is at x direction
- Choose between $\left(x_{k}+1, y_{k}\right)$, or ($\mathrm{x}_{\mathrm{k}}+1, \mathrm{y}_{\mathrm{k}}-1$)
- Midpoint: $\left(x_{k}+1, y_{k}-0.5\right)$
- Region 2:
- Sampling is at y direction
- Choose between ($\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}-1$), or ($\mathrm{x}_{\mathrm{k}}+1, \mathrm{y}_{\mathrm{k}}-1$)
- Midpoint: $\left(\mathrm{x}_{\mathrm{k}}+0.5, \mathrm{y}_{\mathrm{k}}-1\right)$

Conclusion of The Chapter

- Next Part more in these....

