

CHAPTER 4 ANALYSIS OF VARIANCE (ANOVA)

Expected Outcomes

- Able to use the one way ANOVA technique to determine if there is a significant difference among three or more means when sample sizes are equal or unequal.
- Able to use the two way ANOVA technique to determine if there is an effect of interaction between two factors in an experiment.

PREPARED BY: DR SITI ZANARIAH SATARI & NORHAFIZAH MOSLIM

CONTENT

4.1 Introduction to Analysis of Variance (ANOVA)

4.2 One-Way ANOVA

4.3 Two-Way ANOVA

4.1 INTRODUCTION TO ANALYSIS OF VARIANCE (ANOVA)

- Purpose: To compare the differences of more than two populations means.
- ✓ Also known as factorial experiments.
- The approach that allows us to use sample data to see if the values of more than two populations means are likely to be different from each other.
- This name is derived from the fact that in order to test for statistical significance between means, we are actually comparing variances. (so Fdistribution will be used).
- ✓ There are two-types of ANOVA:
 - One-way ANOVA involve one factor
 - Two-way ANOVA involve two factors

Example of problems involving ANOVA

- 1. A manager want to evaluate the performance of three (or more) employees to see if any performance different from others.
- 2. A marketing executive want to see if there's a difference in sales productivity in the 5 company region.
- 3. A teacher wants to see if there's a difference in student's performance if he use 3 or more approach to teach.

Will **three different levels of a chemical concentration** have different effect on **an electroplating process**?

*H*₀ : The mean effect of electroplating process is the same for all three concentration levels.

→ One-way ANOVA

a)

- b) Will **three different levels of a chemical concentration** have different effect on **four electroplating processes**?
 - *H*₀ : Different levels of a chemical concentration have no effect on the electroplating processes.
 - (There is no interaction effect between chemical concentration and electroplating processes)
 - → Two-way ANOVA

The Procedural Steps for an ANOVA Test

- **1.** State the Null (H_0) and Alternative (H_1) hypotheses.
- 2. Determine the test statistic to be used Ftest.
- 3. Establish the test criterion by determining the critical value (point) and rejection region, based on significance level, αF critical.
- 4. Make a decision to reject or fail to reject the null hypothesis based on the comparison between test statistic and critical values. The test is right tailed only. Graphical illustration can help to determine where the statistic value lies either within the rejection or acceptance region.
- 5. Draw a conclusion to reject or not to reject the claim.

Test the hypothesis (rejection region). Graphical illustration can help to determine where the statistic value lies either within the rejection or acceptance region.

Make a conclusion:

There is enough/sufficient evidence to reject/accept the claim

4.2: ONE-WAY ANOVA

Assumptions for one-way ANOVA:

To use the one-way ANOVA test, the following assumptions of data should be considered:

- 1. The populations under study follow normal distribution.
- 2. The samples are drawn randomly, and each sample is independent of the other samples.
- 3. All the populations from which the samples values are obtained, have the same unknown population variances, that is for *k* number of populations,

$$\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_k^2$$

Tabulation of Data for One-Way ANOVA

		Replicates									
Treatment/The	<i>x</i> ₁₁	<i>x</i> ₁₂	•••	x_{1j}		x_{1n}	$x_{1.}$				
level of factor	<i>x</i> ₂₁	<i>x</i> ₂₂		x_{2j}		X_{2n}	<i>x</i> _{2.}				
(variable)	•••	•	•	•	•••	••••	•••				
under	X_{i1}	x_{i2}		X_{ij}		X_{in}	$X_{i.}$				
study/Number	•••	•	•	•	•••	••••	•••				
of population	x_{k1}	x_{k2}		X_{kj}	•••	X_{kn}	$X_{k.}$				
Total	<i>x</i> _{.1}	<i>x</i> _{.2}	•••	<i>X</i> . <i>j</i>		$X_{.n}$	<i>x</i>				

where

 X_{ii} : the *j*th observation from the *i*th treatment

- X_i : the total of all observations from the *i*th treatment
- X_{j} : the total of all treatments from the *j*th observation
- X.. : the total of all observations
- X_{kn} : the *n*th observation from the *k*th treatment

Reminder: The roles of *i* and *j* can be interchanged.

Model for one-way ANOVA

 $x_{ij} = \mu + \alpha_i + \varepsilon_{ij}$, i = 1, 2, ..., k j = 1, 2, ..., n

where

- X_{ii} : the *j*th observation from the *i*th treatment
- μ : the overall mean
- α_i : the *i*th treatment effect

- \mathcal{E}_{ii} : the random error
- k : number of populations (treatments)
- n_i : sample size from *i*th population

Two rules should be fulfilled which are:

a) Assume $\mathcal{E}_{ij} \sim NID(0, \sigma^2)$

where NID is abbreviated for Normally Identically Distributed.

b)
$$\sum_{i=1}^{k} \alpha_i = 0$$
, all treatment effects are the same

The Null and Alternative hypotheses

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_k$$

$$H_1: \mu_i \neq \mu_j$$
 for at least one $i \neq j$

- All population means are equal OR
- No treatment effect (no variation in means among groups)
- At least one population mean is different
 OR
- There are differences between the population means OR
- Not all population means are equal OR
- There is a treatment effect between treatment *i* and treatment *j*

One-way ANOVA Table

Source of Variation	Sum Squares (SS)	Sum Squares (SS)Degrees of Freedom		f_{test}
Treatment	$SSTr = \sum_{i=1}^{k} \frac{x_{i.}^{2}}{n} - \frac{x_{}^{2}}{N}$	k-1	$MSTr = \frac{SSTr}{k-1}$	$f_{test} = \frac{MSTr}{MSE}$
Error	SSE = SST - SSTr	N-k	$MSE = \frac{SSE}{N-k}$	
Total	$SST = \sum_{i=1}^{k} \sum_{j=1}^{n} x_{ij}^{2} - \frac{x_{}^{2}}{N}$	N-1		

Reject H_0 if $f_{test} > f_{\alpha,k-1,N-k}$

An experiment was performed to determine whether the annealing temperature of ductile iron affects its tensile strength. Five specimens were annealed at each of four temperatures. The tensile strength (in kilo-pounds per square inch, ksi) was measured for each temperature. The results are presented in the following table.

Temperature (°C)	Tensile strength (in ksi)									
750	19.72	20.88	19.63	18.68	17.89					
800	16.01	20.04	18.10	20.28	20.53					
850	16.66	17.38	14.49	18.21	15.58					
900	16.93	14.49	16.15	15.53	13.25					

a) Write down the model, assumptions and rules of the one-way ANOVA for the given data.

Model:
$$x_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$
, $i = 1, 2, 3, 4$, $j = 1, 2, 3, 4, 5$.

Assumption:

- 1. The populations under study follow normal distribution.
- 2. The samples are drawn randomly, and each sample is independent of the other samples.
- 3. $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_k^2$

Rules: Assume
$$\varepsilon_{ij} \sim NID(0, \sigma^2)$$
 and $\sum_{i=1}^k \alpha_i = 0$

(b) Perform the ANOVA and test the hypothesis at 0.01 level of significance that the mean data provided by the tensile strength is the same for all four temperatures.

□ From the model above, clearly can be seen that k = 4 and n = 5 thus the table above can be explained as

Temperature		Sample Values									
(°C)	<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5						
750, <i>i</i> = 1	19.72	20.88	19.63	18.68	17.89	$x_{1.} = 96.80$					
800, <i>i</i> = 2	16.01	20.04	18.10	20.28	20.53	<i>x</i> _{2.} =94.96					
850, <i>i</i> =3	16.66	17.38	14.49	18.21	15.58	$x_{3.} = 82.32$					
900, <i>i</i> = 4	16.93	14.49	16.15	15.53	13.25	$x_{4.} = 76.35$					
	$x_{} = 350.43$										

SSE = 95.4875 - 58.6501 = 36.8374

Source of Variation	Sum of Squares (SS)	Degrees of Freedom	Mean of Squares (MS)	$f_{\scriptscriptstyle test}$
Treatment	58.6501	3	$\frac{58.6501}{3} = 19.5500$	$f_{test} = \frac{19.5500}{2.3023} = 8.4915$
Егтог	36.83.74	16	$\frac{36.8374}{16} = 2.3023$	
Total	95.4875	19		

The hypothesis is:

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ $H_1: \mu_i \neq \mu_j, \text{ for at least one } i \neq j$

From statistical table, test statistic $f_{0.01,3,16} = 5.2922$. Clearly that

$$(f_{test} = 8.4915) > (f_{0.01,3,16} = 5.2922)$$

Thus, H_0 is rejected. At $\alpha = 0.01$, at least one of population means of temperature is different

Solve one-way ANOVA using Microsoft EXCEL

1. Excel - Key in data:

Temperature (°C)	Sample Values									
750	19.72	20.88	19.63	18.68	17.89					
800	16.01	20.04	18.10	20.28	20.53					
850	16.66	17.38	14.49	18.21	15.58					
900	16.93	14.49	16.15	15.53	13.25					

	i=1	i=2	i=3	i=4
j=1	19.72	16.01	16.66	16.93
j=2	20.88	20.04	17.38	14.49
j=3	19.63	18.1	14.49	16.15
j=4	18.68	20.28	18.21	15.53
j=5	17.98	20.53	15.53	13.25

2. Follow the steps below:

Click menu: Data \rightarrow Data Analysis \rightarrow ANOVA single factor \rightarrow enter the data range \rightarrow set a value of $\alpha \rightarrow OK$

X		•) • ([™] * 🚺 * :	Ŧ					100	Bookl	- Microsof	t Excel		-					-		23
F	ile	Ho	me Inse	ert Page	Layout	Formulas	Data Re	eview	View											۵ 🕜 د	- @ X
Fro	A om ess	From Web	From From Text So	m Other urces * Co	Existing	Refresh All ~	Connections Properties Edit Links	A Z↓ Z↓ A↓	iort Filter	K Clear Reapply Advanced	Text to Columns	Remove S Duplicates	Data s Validatic	Consolidat	e What-If Analysis *	Group	Ungroup	Subtotal	♥를 Show Deta ■를 Hide Detail	I 📑 Data A	Analysis
			Get Externa		C	Conn	ections		3011 00 11					0015			0	uume		a Analy	515
		H6		<u>(</u>	Jx																¥
		Α	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	0	Р		Q R	S	-
1								_						_							
2				i=1	i=2	i=3	i=4		Data Analys	is				? X							
3			j=1	19.72	16.01	16.66	16.93		Analysis To	ols											
4			j=2	20.88	20.04	17.38	14.49		Anova: Si	nole Eactor				OK							
5			j=3	19.63	18.1	14.49	16.15		Anova: Tv	vo-Factor With R	eplication		-	Cancel							
6			j=4	18.68	20.28	18.21	15.53		Anova: Tv Correlatio	vo-Factor Withou n	ut Replication	n	Ξ								
7			j=5	17.89	20.53	15.58	13.25		Covarianc	e - Chalifatian				<u>H</u> elp							
8									Exponenti	al Smoothing											
9									F-Test Tw Fourier Ar	o-Sample for Var	riances										
10									Histogram	laryaia			-								
11											_										
12									_				_	_							
13																					≡

3. Output:

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	58.65006	3	19.55002	8.491378	0.001327	5.292214
Within Groups	36.8374	16	2.302338			
Total	95.48746	19				

Reject H_0 if *P*-value $\leq \alpha$ or *F* > *F* crit

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ $H_1: \mu_i \neq \mu_j, \text{ for at least one } i \neq j$

Since $(P - value = 0.0013) < (\alpha = 0.01)$, thus, H_0 is rejected. At $\alpha = 0.01$, at least one of population means of temperature is different

4.2 TWO-WAY ANOVA

• Two classification factor is considered

o Example

A researcher whishes to test the effects of two different types of plant food and two different types of soil on the growth of certain plant.

UMP OPEN COURSEWARE

Some types of two way ANOVA design

A4

Tabulation of Data forUniversiti
Malaysia
PAHANGTwo-way ANOVA with Replication

Factor		В			Total
	$x_{111} x_{112} \dots x_{11k} \dots x_{11r}$	 $x_{1j1} x_{1j2} \dots x_{1jk} \dots x_{1jr}$		$x_{1b1} x_{1b2} \dots x_{1bk} \dots x_{1br}$	<i>x</i> ₁
	$x_{211} x_{212} \dots x_{21k} \dots x_{21r}$	 $x_{2j1} x_{2j2} \dots x_{2jk} \dots x_{2jr}$		$x_{2b1} x_{2b2} \dots x_{2bk} \dots x_{2br}$	<i>x</i> ₂
Δ	:	:		:	:
Λ	$x_{i11} x_{i12} \dots x_{i1k} \dots x_{i1r}$	 $x_{ij1} x_{ij2} \dots x_{ijk} \dots x_{ijr}$		$x_{ib1} x_{ib2} \dots x_{ibk} \dots x_{ibr}$	<i>x</i> _{<i>i</i>}
	:	:	:	:	:
	$x_{a11} x_{a12} \dots x_{a1k} \dots x_{a1r}$	 $x_{aj1} x_{aj2} \dots x_{ajk} \dots x_{ajr}$		$x_{ab1} x_{ab2} \dots x_{abk} \dots x_{abr}$	<i>x</i> _{<i>a</i>}
Total	<i>x</i> _{.1.}	 <i>x</i> . <i>j</i> .		x _{.b.}	<i>x</i>

Where;

- a : Number of levels of factor A
- b: Number of levels of factor B
- r: Number of replicates
- x_{ijk} : the *k*th observation from the (*ij*)th cell
- $x_{i..}$: the total of all observations from the *i*th level of factor A
- $x_{.j.}$: the total of all observations from the *j*th level of factor B
- \mathcal{X}_{\dots} : the total of all observations

Assumptions for two-way ANOVA with replication

- 1. The populations under study follow normal distribution.
- 2. The samples are drawn randomly, and each sample is independent of the other samples.
- 3. All the populations from which the samples values are obtained, have the same unknown population variances, that is for *k* number of populations,

$$\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_k^2$$

- 4. Observations are taken on every possible treatment.
- 5. The number of replication is the same for each treatment.
- 6. The number of replication per treatment, *k* must be at least 2.

Model for Two-way ANOVA with replication

$$x_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$$

where

- x_{ijk} : the k^{th} observation from the $(ij)^{\text{th}}$ cell
- μ : the overall mean
- α_i : the effect of the *i*th level of factor A
- β_i : the effect of the j^{th} level of factor B
- $(\alpha\beta)_{ij}$: the interaction effect of the *i*th level of factor A and the *j*th level of factor B

Rules to construct the model

1. Assume
$$\varepsilon_{ijk} \sim NID(0,\sigma^2)$$

2.
$$\sum_{i=1}^{a} \alpha_i = 0$$
 $\sum_{j=1}^{b} \beta_j = 0$ $\sum_{i=1}^{a} (\alpha \beta)_{ij} = 0$ $\sum_{j=1}^{b} (\alpha \beta)_{ij} = 0$

Null & Alternative Hypothesis

Interaction effect

 H_{OAB} : There is no interaction effect between factor A and factor B.

 H_{1AB} : There is an interaction effect between factor A and factor B.

Row effect H_{0A} : There is no effect of factor A. H_{1A} : There is an effect of factor A.Marginal
effect H_{0B} : There is no effect of factor B. H_{1B} : There is an effect of factor B.

Jniversiti Valavsia

Two-way ANOVA Table

Source	Sum Squares	Degree of Freedom	Mean Squares	f_{mst}	Critical value
A (row effect)	$SSA = \frac{1}{br} \sum_{i=1}^{a} x_{i}^{2} - \frac{x_{}^{2}}{abr}$	a-1	$MSA = \frac{SSA}{a-1}$	$f_{test} = \frac{MSA}{MSE}$	$f_{\alpha,a-1,ab(r-1)}$
B (column effect)	$SSB = \frac{1}{ar} \sum_{j=1}^{b} x_{.j.}^{2} - \frac{x_{}^{2}}{abr}$	<i>b</i> –1	$MSB = \frac{SSB}{b-1}$	$f_{test} = \frac{MSB}{MSE}$	$f_{\alpha,b-1,ab(r-1)}$
AB (interaction effect)	$SSAB = \frac{1}{r} \sum_{i=1}^{a} \sum_{j=1}^{b} x_{ij}^{2} - \frac{x_{}^{2}}{abr}$ $- SSA - SSB$	(a-1)(b-1)	$MSAB = \frac{SSAB}{(a-1)(b-1)}$	$f_{test} = \frac{MSAB}{MSE}$	$f_{\alpha,(a-1)(b-1),ab(r-1)}$
Error	SSE = SST - SSA -SSB - SSAB	ab(r-1)	$MSE = \frac{SSE}{ab(r-1)}$		
Total	$SST = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} x_{ijk}^{2} - \frac{x_{}^{2}}{abr}$	abr – 1			

Example 3

A chemical engineer studies the effects of various reagents and catalysts on the yield of a chemical process. Yield is expressed as a percentage of a theoretical maximum. Two runs of the process are made for each combination of three reagents and four catalysts.

Catalyst	Reagent						
Catalyst	1	2	3				
А	86.8 82.4	93.4 85.2	77.9 89.6				
В	71.9 72.1	74.5 87.1	87.5 82.7				
С	65.5 72.4	66.7 77.1	72.7 77.8				
D	63.9 70.4	73.7 81.6	79.8 75.7				

- (a) How many treatments involved in this experiment?
- (b) Construct an ANOVA table.
- (c) Test if there is an interaction effect between reagents and catalysts on the yield of a chemical process at 5% significance level

a) How many treatments involved in this experiment?

Factor A has 4 levels, factor B has 3 levels and each sample has 2 replicates.

Thus, a = 4, b = 3, and r = 2. Total treatment = 12.

b) ANOVA

Catalvat		Total			
Catalyst	1	2	3	Total	
А	$x_{11.} = 169.2$	$x_{12.} = 178.6$	$x_{13.} = 167.5$	$x_{1} = 515.3$	
В	$x_{21.} = 144.0$	$x_{22} = 161.6$	$x_{23.} = 170.2$	$x_{2} = 475.8$	
С	$x_{31.} = 137.9$	$x_{32.} = 143.8$	$x_{33.} = 150.5$	$x_{3} = 432.2$	
D	$x_{41.} = 134.3$	$x_{42.} = 155.3$	$x_{43.} = 155.5$	$x_{4} = 445.1$	
Total	$x_{.1.} = 585.4$	$x_{.2.} = 639.3$	$x_{.3.} = 643.7$	<i>x</i> =1868.4	

Calculate sum of square values:

SSE = 1440.0400 - 683.4900 - 263.4775 - 138.7825 = 354.29

ANOVA table:

Source	Sum Squares	Degree of Freedom	Mean Squares	$f_{\scriptscriptstyle test}$
A (row effect)	683.4900	3	$MSA = \frac{683.4900}{3} = 227.8300$	$f_{test4} = \frac{227.8300}{29.5242} = 7.7167$
B (column effect)	263.4775	2	$MSB = \frac{263.4775}{2} = 131.7388$	$f_{testB} = \frac{131.7388}{29.5242} = 4.4621$
AB (interaction effect)	138.7825	6	$MSAB = \frac{138.7825}{6}$ = 23.1304	$f_{testAB} = \frac{23.1304}{29.5242} = 0.7834$
Ентог	354.2900	12	$MSE = \frac{354.2900}{12} = 29.5242$	
Total	1440.0400	23		

(d) Test if there is an interaction effect between reagents and catalysts on the yield of a chemical process at 5% significance level

 H_{0AB} : There is no interaction effect between reagent and catalyst H_{1AB} : There is an interaction effect between reagent and catalyst

From statistical table, $f_{0.05,6,12} = 2.9961$.

Clearly that, $(f_{testAB} = 0.7834) < (f_{0.05,6,12} = 2.9961)$. Thus, do not reject H_0 .

At $\alpha = 0.05$, there is no interaction effect between catalyst and reagent on the yield of a chemical process

Since there is no interaction effect, test of row effect and column effect should be conducted as follows.

 H_{0A} : There is no effect of catalysts H_{1A} : There is an effect of catalyst

From statistical table, $f_{0.05,3,12} = 3.4903$. Clearly that, $(f_{testA} = 7.7167) > (f_{0.05,3,12} = 3.4903)$. Thus, reject H_0 At $\alpha = 0.05$, there is an effect of catalyst on the yield of a chemical process.

 H_{0B} : There is no effect of reagents H_{1B} : There is an effect of reagents

From statistical table, $f_{0.05,2,12} = 3.8853$. Clearly that, $(f_{testB} = 4.4621) > (f_{0.05,2,12} = 3.8853)$. Thus, reject H_0 At $\alpha = 0.05$, there is an effect of reagents on the yield of a chemical process.

Solve two-way ANOVA by using Malaysia Microsoft EXCEL

1. Excel – Key in data

	Reagent 1	Reagent 2	Reagent 3
Catalyst A	86.8	93.4	77.9
	82.4	85.2	<mark>89.6</mark>
Catalyst B	71.9	74.5	87.5
	72.1	87.1	82.7
Catalyst C	<mark>65.</mark> 5	66.7	72.7
	72.4	77.1	77.8
Catalyst D	63.9	73.7	79.8
	70.4	81.6	75.7

2. Follow the steps below:

Data-Data Analysis \rightarrow ANOVA two factor with replication \rightarrow enter the data range \rightarrow set a value for $\alpha \rightarrow OK$

X	19-1	(4 - mb- 1+							Book1	- Microso	ft Excel	Sec. 1	- 12						0 0	13
file	Ho	ome Insert	Page Layo	ut Formul	as Data	Review	View	0											a 🕜 =	- # X
From	From Web	From From (Text Source	Other Exist es * Conner	ing clions All	Propertie	ions ĝ. is ž.	A Z Z A Sort	Filter	K Clear Co Reapply C Advances	Text to Column	Remove s Duplicate	Data Validabo Data Te	Consolida	ite What-B Analysis	Group	Ungroup S	●] ■] ubtotal	Show Detail Hide Detail	Data Ar	nalysis
	B2	• (- fx	1											-					~
	A	В	C	D	E	F	6	3	Н	1	J	К	L	М	Ν	0	P	Q	R	-
1		[Reagent 1	Reagent 2	Reagent 3		Anova: T	wo-Fact	tor With Replic	ation		8	x							
3			86.8	93.4	77.9		Input	Ranne:		6867-656	N 19	1	ОК							
.4		Catalyst A	82.4	85.2	89.6		2 4 M	ander.		-	30 (11)	G	ancel							
5		Catalant P	71.9	74.5	87.5		Rows	per samp	xe:	2										
6		Catalyst B	72.1	87.1	82.7		Alpha:			0.05		_	jeb							
7		1 current	65.5	66.7	72.7		Outrait	antions												
8		Catalyst C	72.4	77.1	77.8		6.0	ing at D and	-	-	5	1								
9		C.L.	63.9	73.7	79.8		0 <u>0</u> 0	u Windel	iye. heat Dhu		104	2								
10		Catalyst D	70.4	81.6	75.7		C Ne	w Workb	neer gy.			4								
11							0.14	II TTOUR												
12							-	-	-	_	-	_								-
13																				

3. ANOVA table:

ANOVA						
Source of Variatio	n SS	df	MS	F	P-value	F crit
Sample	683.49	3	227.83	7.716729	0.003903	3.490295
Columns	263.4775	2	131.7388	4.462065	0.03558	3.885294
Interaction	138.7825	6	23.13042	0.78344	0.598995	2.99612
Within	354.29	12	29.52417			

Reject H_0 if *P*-value $\leq \alpha$ or *F* > *F* crit

 H_{0AB} : There is no interaction effect between reagent and catalyst

 H_{1AB} : There is an interaction effect between reagent and catalyst

Clearly that, $(Pvalue = 0.5990) > (\alpha = 0.05)$. Thus, do not reject H_0 .

At $\alpha = 0.05$, there is no interaction effect between catalyst and reagent on the yield of a chemical process. Since there is no interaction effect, test of row effect and column effect should be conducted.

3. ANOVA table:

	1							
catalyst →	ANOVA							
	Source of Variation	SS	df	MS	F	P-value	F crit	
	Sample	683.49	3	227.83	7.716729	0.003903	3.490295	
reagents →	Columns	263.4775	2	131.7388	4.462065	0.03558	3.885294	
	Interaction	138.7825	6	23.13042	0.78344	0.598995	2.99612	
	Within	354.29	12	29.52417				
H_{0A} : Th	ere is no effect o	of catalys	sts	H_{0B} : There is no effect of reagent				
H_{1A} : Th	ere is an effect o	f catalys	t	H_{1B} : Th	nere is a	n effect	of reage	ents

ROW EFFECT:

 $(P-value = 0.0039) < (\alpha = 0.05)$, the decision is reject H_0 .

At $\alpha = 0.05$, there is an effect of catalyst on the yield of a chemical process.

COLUMN EFFECT:

 $(P-value = 0.0356) < (\alpha = 0.05)$, the decision is reject H_0

At $\alpha = 0.05$, there is an effect of reagents on the yield of a chemical process.

REFERENCES

- 1. Montgomery D. C. & Runger G. C. 2011. *Applied Statistics and Probability for Engineers*. 5th Edition. New York: John Wiley & Sons, Inc.
- 2. Walpole R.E., Myers R.H., Myers S.L. & Ye K. 2011. *Probability and Statistics for Engineers and Scientists*. 9th Edition. New Jersey: Prentice Hall.
- 3. Navidi W. 2011. *Statistics for Engineers and Scientists.* 3rd Edition. New York: McGraw-Hill.
- 4. Bluman A.G. 2009. *Elementary Statistics: A Step by Step Approach.* 7th Edition. New York: McGraw–Hill.
- 5. Triola, M.F. 2006. *Elementary Statistics*. 10th Edition. UK: Pearson Education.
- 6. Satari S. Z. et al. Applied Statistics Module New Version. 2015. Penerbit UMP. Internal used.

Thank You

NEXT: CHAPTER 5 LINEAR REGRESSION & CORRELATION

