

BCN1043

COMPUTER ARCHITECTURE & ORGANIZATION

By Dr. Mritha Ramalingam

Faculty of Computer Systems & Software Engineering

mritha@ump.edu.my

http://ocw.ump.edu.my/

AUTHORS

- Dr. Mohd Nizam Mohmad Kahar (mnizam@ump.edu.my)
- Jamaludin Sallim (jamal@ump.edu.my)
- Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)
- **Dr. Mritha Ramalingam** (mritha@ump.edu.my)

Faculty of Computer Systems & Software Engineering

BCN1043

COMPUTER ARCHITECTURE & ORGANIZATION

Chapter 5 continues...

COMPUTER MEMORY

- 1. Storage System & Technology
- 2. Memory Hierarchy
- 3. Memory Organization and Operations
- 4. Cache Memory

Cache Memory

- Cache memory is
 - relatively small memory
 - Faster
 - Very expensive
 - Cache sits between main memory and CPU
 - Will hold copies of main memory section
 - When the CPU reads a memory word, firstly, the word is checked in cache
 - If present, the word is transferred to CPU
 - otherwise, a main memory block is read into cache, then the word is transferred to CPU.

Source: http://docplayer.net

Characteristics of the Memory Hierarchy

Factors in Cache Design

- Size
- Mapping Function
 - Direct
 - Associative
 - Set Associative
- Line Replacement Algorithm
 - Least recently used (LRU)
 - First in first out (FIFO)
 - Least Frequently used (LFU)
 - Random

- Write Policy
 - Write through
 - Write back
- Block/Line Size
- Number and type of Caches
 - Single or two level
 - Unified or split

- mapping techniques
 - Direct mapping
 - Associative mapping
 - Set associative mapping

Cache of direct mapping includes

- →Tag identifier
- → Line number identifier
- ➔ Word identifier (offset)

Of main memory address

tag - stored with data

Line identifier - physical line that holds address in cache

Word identifier - specific word in a cache to be read

Direct Mapping Cache Organization

Source: William Stallings, Computer Organization and Architecture, 10th Edn

Advantages and disadvantages of Direct Mapping

- Advantages
 - Easy implementation
 - Relatively less implementation cost
 - Easy to determine in cache
- Disadvantages
 - Each main memory block is mapped to a specific cache line
 - Can refer the blocks that map to the same line number

Associative mapping

- Advantages Fast & Flexible
- Disadvantages
 Implementation cost

Fully Associative Cache Organization

Set Associative Mapping

- Compromise between direct and fully associative mappings that builds on the strengths of both
- Divide cache into a number of sets (v), each set holding a number of lines (k)
- A main memory block can be stored in any one of the k lines in a set such that

set number = j modulo v

- If a set can hold X lines, the cache is referred to as an X-way set associative cache
 - Most cache systems today that use set associative mapping are 2- or 4-way set associative
 - 2 lines per set (2 way set associative mapping)

Communitisina Technoloav

we way Set Associative Cache Organization

Communitising Technology

Line Replacement Algorithms

- When an associative cache or a set associative cache set is full, which line to replace with the new line that is to be read from memory?
 - Least Recently used (LRU)
 - e.g. in 2 way set associative; Which of the 2 block is LRU?
 - First in first out (FIFO)
 - Replace block that has been in cache longest
 - Least frequently used
 - Replace block which has had fewest hits
 - Random

Write Policy

 While replacing a line, the original copy of the line in main memory must be updated

• E.g

- Write through
- Write back

Write through

Anytime a word in cache is changed, it is also changed in main memory Both copies always agree

Write back

During a write, only change the contents of the cache Update main memory only when the cache line is to be replaced

Block / line sizes

- The amount of data to be transferred to cache from main memory
- Maintains Complex relationship between block size and hit ratio

Number of caches

- L1
 - Modern CPU chips have on-board cache (L1)
 - L1 provides best performance
 - L2 provides high speed access to main memory
 - L2 is usually 512KB or less above that is not costeffective

Cache Types

- Unified cache stores data and instructions in 1 cache
 - Only 1 cache to design and operate
 - Cache is flexible and can balance "allocation" of space to instructions or data to best fit the execution of the program -- higher hit ratio
- Split cache uses 2 caches -- 1 for instructions and 1 for data
 - Must build and manage 2 caches
 - Static allocation of cache sizes
 - Can out perform unified cache in systems that support parallel execution and pipelining (reduces cache contention)

Chapter 5 Review

- 1. Storage System & Technology
- 2. Memory Hierarchy
- 3. Memory Organization and Operations
- 4. Cache Memories

Chapter 5 ends!

