CHAPTER 3
 HYPOTHESIS TESTING

Expected Outcomes

\checkmark Able to test a population mean when population variance is known or unknown.
\checkmark Able to test the difference between two populations mean when population variances are known or unknown.
\checkmark Able to test paired data using z-test and t-test.
\checkmark Able to test population proportion using z-test.
\checkmark Able to test the difference between two populations proportion using z-test.
\checkmark Able to test a population variance and test the difference between two populations variances.
\checkmark Able to determine the relationship between hypothesis testing and confidence interval.
\checkmark Able to solve hypothesis testing using Microsoft Excel.

CONTENT

3.1 Introduction to Hypothesis Testing
3.2 Test Hypothesis for Population Mean with known and unknown Population Variance
3.3 Test Hypothesis for the Difference Population Means with known and unknown Population Variance
3.4 Test Hypotheses for Paired Data
3.5 Test Hypotheses for Population Proportion
3.6 Test Hypotheses for the Difference between Two Population Proportions
3.7 Test Hypotheses for Population Variance
3.8 Test Hypotheses for the Ratio of Two Population Variances
$3.9 \quad$ P-Values in Hypothesis Test
3.10 Relationship between Hypothesis Tests and Confidence Interval

3.1 INTRODUCTION TO HYPOTHESIS TESTING

- A statistical hypothesis is a statement or conjecture or assertion concerning a parameter or parameters of one or more populations. Many problems in science and engineering require that we need to decide either to accept or reject a statement about some parameter, which is a decision-making process for evaluating claims or statement about the population(s). The decision-making procedure about the hypothesis is called hypothesis testing.

3.1.1 TERMS AND DEFINITION

Definition 1a:

A null hypothesis, denoted
by is a statistical hypothesis that states an assertion about one or more population parameters.

Definition 1b:

The alternative hypothesis denoted by is a statistical hypothesis that states the assertion of all situations that not covered by the null hypothesis.

$$
\begin{array}{lll}
H_{0}: \theta=\theta_{0} & \text { TWO TAILED TEST } & H_{1}: \theta \neq \theta_{0} \\
H_{0}: \theta \leq \theta_{0} & \text { RIGHT TAILED TEST } & H_{1}: \theta>\theta_{0} \\
H_{0}: \theta \geq \theta_{0} & \text { LEFT TAILED TEST } & H_{1}: \theta<\theta_{0}
\end{array}
$$

parameter A value

Types Of Hypothesis

Type of Hypothesis		Hypothesis
Two-tailed test		$H_{0}: \theta=\theta_{0}$
		$H_{1}: \theta \neq \theta_{0}$
One- tailed test	Right-tailed test	$H_{0}: \theta \leq \theta_{0}$
	Left-tailed test	$H_{1}: \theta>\theta_{0}$

Note:
(i) The H_{0} should have 'equals' sign and H_{1} should not have 'equals' sign.
(ii) The H_{0} is on trial and always initially assumed to be true.
(iii) Accept H_{0} if the sample data are consistent with the null hypothesis.
(iv) Reject H_{0} if the sample data are inconsistent with the null hypothesis, and accept the alternative hypothesis.

Definition 2: A test statistic is a sample statistic computed from the data obtained by random sampling.

$$
\rightarrow \quad Z_{\text {test }}, t_{\text {test }}, \chi_{\text {test }}^{2}, f_{\text {test }}
$$

Definition 3: The rejection (critical) region α, is the set of values for the test statistics that leads to rejection of the null hypothesis.

Definition 4: The acceptance region, $1-\alpha$ is the set of values for the test statistics that leads to acceptance of the null hypothesis.

Definition 5: The critical value(s) is the value(s) of boundary that separate the rejection and acceptance regions.

Definition 6: The decision rule of a statistical hypothesis test is a rule that specifies the conditions under which the null hypothesis may be rejected.
\rightarrow Reject H_{0} if test statistics $>$ critical value

Type	of Test	Hypothesis	Rejection Region	Graphical Display (Hypothesis using test statistic z with $\alpha=0.05$)
Two-tailed test		$\begin{aligned} & H_{0}: \theta=\theta_{0} \\ & H_{1}: \theta \neq \theta_{0} \end{aligned}$	Both sides	
One- tailed test	Righttailed test	$\begin{aligned} & H_{0}: \theta \leq \theta_{0} \\ & H_{1}: \theta>\theta_{0} \end{aligned}$	Right side	
	Left- tailed test	$\begin{aligned} & H_{0}: \theta \geq \theta_{0} \\ & H_{1}: \theta<\theta_{0} \end{aligned}$	Left side	

Definition 7: Rejecting the null hypothesis when it is true is defined as Type I error.

$$
\rightarrow \mathrm{P}(\text { Type I error })=\alpha \text { (significance level) }
$$

Definition 8: Failing to reject the null hypothesis when it is false in state of nature is defined as Type II error.

$$
\rightarrow \quad \mathrm{P}(\text { Type II error })=\beta
$$

Possible Outcomes:

Statistical Conclusion/decision

State of Nature
H_{0} is true
H_{0} is false

Type I error
Correct decision

Correct decision Not to reject H_{0}

Type II error

Example 2

The additive might not significantly increase the lifetimes of automobile batteries in the population, but it might increase the lifetime of the batteries in the sample. In this case, H_{0} would be rejected when it was really true, which committing a type I error.

While, the additive might not work on the batteries selected for the sample, but if it were to be used in the general population of batteries, it might significantly increase their lifetime. Hence based on the information obtained from the sample, would not reject the H_{0}, thus committing a type II error.

Hypothesis testing common phrase

$>: H_{1}$	$<: H_{1}$
Is greater than	Is less than
Is above	Is below
Is higher than	Is lower than
Is longer than	Is shorter than
Is bigger than	Is smaller than
Is increased	Is decreased or reduced from
$\geq: H_{0}$	$\leq \quad H_{0}$
Is greater than or equal	Is less than or equal
Is at least	Is at most
Is not less than	Is not more than
$=: H_{0}$	$\neq \quad H_{1}$
Is equal to	Is not equal to
Is exactly the same as	Is different from
Has not changed from	Has changed from
Is the same as	Is not the same as

3.2.1 PROCEDURES OF HYPOTHESIS TESTING

Step 1: Formulate a hypothesis and state the claim
Two-tailed test OR Right-tailed test OR Left-tailed test

$$
\begin{array}{lll}
H_{0}: \theta=\theta_{0} & H_{0}: \theta \leq \theta_{0} & H_{0}: \theta \geq \theta_{0} \\
H_{1}: \theta \neq \theta_{0} & H_{1}: \theta>\theta_{0} & H_{1}: \theta<\theta_{0}
\end{array}
$$

Step 2: Choose the appropriate test statistic, and calculate the sample test statistic value:

$$
Z_{\text {test }}, t_{\text {test }}, \chi_{\text {test }}^{2}, f_{\text {test }}
$$

Step 3: Establish the test criterion by determining the critical value (point) and critical region
\square Significance level value, α
Inequality ($\neq>,>,<$) used in the H_{1}
Step 4: Make a decision to reject or not to reject the H_{0}.
Step 5: Draw a conclusion to reject or to accept the claim or statement.

Hypothesis Testing: Step by Step

Make a conclusion - there is enough evidence to reject/accept the claim at α

3.2: TEST HYPOTHESES FOR POPULATION MEAN, μ WITH KNOWN AND UNKNOWN POPULATION VARIANCE

Two-tailed test

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{1}: \mu \neq \mu_{0}
\end{aligned}
$$

Right-tailed test

$$
\begin{aligned}
& H_{0}: \mu \leq \mu_{0} \\
& H_{1}: \mu>\mu_{0}
\end{aligned}
$$

Left-tailed test

$$
\begin{aligned}
& H_{0}: \mu \geq \mu_{0} \\
& H_{1}: \mu<\mu_{0}
\end{aligned}
$$

Test Statistics of Hypothesis Testing for Mean μ

Where: $\mu_{0}=$ population mean
NOTE: $\boldsymbol{Z}_{\text {test }}$ and $\boldsymbol{t}_{\text {test }}$ are test statistics

The Rejection Criteria (1)

i. If the population variance, σ^{2} is known, the test statistic to be used is

$$
z_{\text {test }}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \sim z_{\alpha} .
$$

Therefore the rejection procedure for each type of hypothesis can be summarised as in following Table

Hypothesis testing for $\boldsymbol{\mu}$ with known $\boldsymbol{\sigma}^{2}$

H_{0}	H_{1}	Statistical Test	Reject H_{0} if	
$H_{0}: \mu=\mu_{0}$	$H_{1}: \mu \neq \mu_{0}$	$z_{\text {test }}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}$	$z_{\text {test }}>z_{\alpha / 2}$ or $z_{\text {test }}<-z_{\alpha / 2}$	
$H_{0}: \mu \leq \mu_{0}$	$H_{1}: \mu>\mu_{0}$		$z_{\text {test }}<-z_{\alpha}$	
$H_{0}: \mu \geq \mu_{0}$	$H_{1}: \mu<\mu_{0}$			

The Rejection Criteria (2)

ii. If the population variance, σ^{2} is unknown and the sample size is large, i.e. $n \geq 30$, then the test statistic to be used is

$$
z_{\text {test }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \sim z_{\alpha}
$$

Therefore the rejection procedure for each type of hypothesis can be summarised as in following Table

Hypothesis testing for $\boldsymbol{\mu}$ with unknown $\boldsymbol{\sigma}^{\mathbf{2}}$ and $n \geq 30$

H_{0}	H_{1}	Statistical Test	Reject H_{0} if
$H_{0}: \mu=\mu_{0}$	$H_{1}: \mu \neq \mu_{0}$	$z_{\text {test }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$	$z_{\text {test }}>z_{\alpha / 2} \quad$ or $\quad z_{\text {test }}<-z_{\alpha / 2}$
$H_{0}: \mu \leq \mu_{0}$	$H_{1}: \mu>\mu_{0}$		$z_{\text {test }}>z_{\alpha}$
$H_{0}: \mu \geq \mu_{0}$	$H_{1}: \mu<\mu_{0}$		$z_{\text {test }}<-z_{\alpha}$

The Rejection Criteria (3)

iii. If the population variance, σ^{2} is unknown and the sample size is small, i.e. $n<30$, then the test statistic to be used is

$$
t_{\text {test }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \sim t_{\alpha, v} \quad \text { where } v=n-1
$$

Therefore the rejection procedure for each type of hypothesis can be summarised as in following Table

Hypothesis testing for $\boldsymbol{\mu}$ with unknown $\boldsymbol{\sigma}^{2}$ and $n<30$

H_{0}	H_{1}	Statistical Test	Reject H_{0} if	
$H_{0}: \mu=\mu_{0}$	$H_{1}: \mu \neq \mu_{0}$	$t_{\text {test }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$	$t_{\text {test }}>t_{\alpha / 2, n-1}$ or $t_{\text {test }}<-t_{\alpha / 2, n-1}$	
$H_{0}: \mu \leq \mu_{0}$	$H_{1}: \mu>\mu_{0}$		$t_{\text {test }}<-t_{\alpha, n-1}$	
$H_{0}: \mu \geq \mu_{0}$	$H_{1}: \mu<\mu_{0}$			

Example 3

Most water-treatment facilities monitor the quality of their drinking water on an hourly basis. One variable monitored is pH , which measures the degree of alkalinity or acidity in the water. A pH below 7.0 is acidic, above 7.0 is alkaline and 7.0 is neutral. One water-treatment plant has target a pH of 8.5 (most try to maintain a slightly alkaline level). The mean and standard deviation of 1 hour's test results based on 31 water samples at this plant are 8.42 and 0.16 respectively. Does this sample provide sufficient evidence that the mean pH level in the water differs from 8.5? Use a 0.05 level of significance. Assume that the population is approximately normally distributed.

Solution:

Step 1: Formulate a hypothesis and state the claim.
$X: \mathrm{pH}$ level in the water
$H_{0}: \mu=8.5$
$H_{1}: \mu \neq 8.5 \quad$ (claim)

Example 3: solution

Step 2: Choose the appropriate test statistic and calculate the sample test statistic value.
Since σ^{2} is unknown, i.e. $s^{2}=0.16^{2}$ and $n \geq 30$,
the test statistic is $z_{\text {test }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{8.42-8.5}{0.16 / \sqrt{31}}=-2.7839$.

Step 3: Establish the test criterion by determining the critical value and rejection region.

H_{0}	H_{1}	Statistical Test	Reject H_{0} if
$H_{0}: \mu=\mu_{0}$	$H_{1}: \mu \neq \mu_{0}$	$z_{\text {test }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$	$z_{\text {test }}>z_{\alpha / 2}$ or $z_{\text {test }}<-z_{\alpha / 2}$
$H_{0}: \mu \leq \mu_{0}$	$H_{1}: \mu>\mu_{0}$		$z_{\text {test }}>z_{\alpha}$
$H_{0}: \mu \geq \mu_{0}$	$H_{1}: \mu<\mu_{0}$		$z_{\text {test }}<-z_{\alpha}$

Example 3: solution

Step 3: Establish the test criterion by determining the critical value and rejection region.

H_{0}	H_{1}	Statistical Test	Reject H_{0} if
$H_{0}: \mu=\mu_{0}$	$H_{1}: \mu \neq \mu_{o}$	$z_{\text {test }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$	$z_{\text {test }}>z_{\alpha / 2} \quad$ or $\quad z_{\text {test }}<-z_{\alpha / 2}$

Given $\alpha=0.05$ and the test is two-tailed test, hence the critical values are $z_{0.025}=1.9600$ and $-z_{0.025}=-1.9600$.

Step 4: Make a decision to reject or fail to reject the H_{0}.

Since $\left(z_{\text {test }}=-2.7839\right)<\left(-1.96=-z_{0.025}\right)$, then we reject H_{0}.

Step 5: Draw a conclusion to reject or to accept the claim or statement.
At $\alpha=0.05$, the sample provide sufficient evidence that the mean pH level in the water differs from 8.5.

3.3 TEST HYPOTHESES FOR THE DIFFERENCE BETWEEN TWO POPULATIONS MEAN

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=\mu_{0} \\
& H_{1}: \mu_{1}-\mu_{2} \neq \mu_{0} \\
& H_{0}: \mu_{1}-\mu_{2} \leq \mu_{0} \\
& H_{1}: \mu_{1}-\mu_{2}>\mu_{0}
\end{aligned}
$$

Two-tailed test

Right-tailed test

$H_{0}: \mu_{1}-\mu_{2} \geq \mu_{0}$
$H_{1}: \mu_{1}-\mu_{2}<\mu_{0}$
Left-tailed test

Test Statistics for the Difference between Means

Example 4

The overall distance travelled of a golf ball is tested by hitting the ball with the golf stick. Ten balls selected randomly from two different brands are tested and the overall distance is measured and the data is given as follows.

Overall distance travelled of golf ball (in meters)

Brand 1	251	262	263	248	259	248	255	251	240	244
Brand 2	236	223	238	242	250	257	248	247	240	245

By assuming that both population variances are unequal, can we say that both brands of ball have similar average overall distance? Use $\alpha=0.05$.

Example 4: solution

Step 1:

X_{1} : Overall distance travelled of golf ball from brand 1
X_{2} : Overall distance travelled of golf ball from brand 2
The hypothesis is

$$
\begin{aligned}
& \left.H_{0}: \mu_{1}-\mu_{2}=0 \quad \text { (claim }\right) \\
& H_{1}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

Step 2:

Statistic	Brand 1	Brand 2
n	10	10
\bar{x}	252.1	242.6
s	7.6077	9.2640

Since σ_{1}^{2} and σ_{2}^{2} are unknown, $\sigma_{1}^{2} \neq \sigma_{2}^{2}$, and $n_{1}<30, n_{2}<30$, then the test statistic is
$t_{\text {test }}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\mu_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{(252.1-242.6)-0}{\sqrt{\frac{7.6077^{2}}{10}+\frac{9.2640^{2}}{10}}}=2.5061$

Example 4: solution

Step 3: Given $\alpha=0.05$ and the test is two-tailed test. The critical value is

$$
\begin{aligned}
& t_{\frac{\alpha}{2}, v}=t_{0.025,17}=2.1098 \\
& \text { where } v=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{n_{1}-1}+\frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}-1}}=\frac{\left(\frac{7.6077^{2}}{10}+\frac{9.2640^{2}}{10}\right)^{2}}{\left(\frac{7.6077^{2}}{10}\right)^{2}}+\frac{\left(\frac{9.2640^{2}}{10}\right)^{2}}{9}
\end{aligned}=17.3442 \approx 17 .
$$

Step 4: Since $\left(t_{\text {test }}=2.5061\right)>\left(t_{0.025,17}=2.1098\right), \quad H_{0}$ is rejected.
Step 5: At $\alpha=0.05$, there is no significant evidence to support that both brands of ball have similar average overall distance

3.4 TEST HYPOTHESES FOR PAIRED DATA

Two-tailed test

$$
\begin{aligned}
& H_{0}: \mu_{D}=\mu_{0} \\
& H_{1}: \mu_{D} \neq \mu_{0}
\end{aligned}
$$

Right-tailed test

$$
H_{0}: \mu_{D} \leq \mu_{0}
$$

$$
H_{1}: \mu_{D}>\mu_{0}
$$

Left-tailed test

$$
\begin{aligned}
& H_{0}: \mu_{D} \geq \mu_{0} \\
& H_{1}: \mu_{D}<\mu_{0}
\end{aligned}
$$

Test Statistics

$$
t_{t e s t}=\frac{\bar{x}_{D}-\mu_{0}}{s_{D} / \sqrt{n}} \sim t_{\alpha, v}
$$

where

$$
D=X_{1}-X_{2} \text { differences }
$$ between the paired sample n is number of paired sample

\bar{x}_{D}, S_{D}, are the mean and standard deviation for the difference of paired sample, respectively

$$
v=n-1, \text { degrees of freedom }
$$

$\mu_{D}=\mu_{1}-\mu_{2}$ is population mean difference, $-\infty<\mu_{D}<\infty$

Example 5

A new gadget is installed to air conditioner unit(s) in a factory to minimize the number of bacteria floating in the air. The number of bacteria floating in the air before and after the installation for a week in the factory is recorded as follows.

Before	10.1	11.6	12.1	9.1	10.3	15.3	13.0
After	11.2	8.5	8.4	8.4	8.0	7.6	7.2

Is it wise for the factory management to install the new gadget? By assuming the data is approximately normally distributed, test the hypothesis at 5% level of significance.

Example 5: solution

$H_{0}: \mu_{D} \leq 0$
$H_{1}: \mu_{D}>0$ (wise to install the new gadget)
where $\mu_{D}=\mu_{\text {Before-Atter }}$

Before, X_{1}	10.1	11.6	12.1	9.1	10.3	15.3	13.0
After, X_{2}	11.2	8.5	8.4	8.4	8.0	7.6	7.2
$D=X_{1}-X_{2}$	-1.1	3.1	3.7	0.7	2.3	7.7	5.8

$\bar{x}_{D}=3.1714$
$s_{D}=2.9669$

$$
t_{0.05,6}=1.943
$$

$t_{\text {test }}=\frac{3.1714-0}{2.9669 / \sqrt{7}}=2.8281$

Since $\left(t_{\text {test }}=2.8281\right)>\left(t_{0.05,6}=1.943\right) \quad H_{0}$ is rejected.
It is wise for the factory management to install the new gadget, at 5% level of significance.

3.5 TEST HYPOTHESES FOR POPULATION PROPORTION

- The hypothesis:

Two-tailed test

$$
\begin{aligned}
& H_{0}: \pi=\pi_{0} \quad \text { OR } \\
& H_{1}: \pi \neq \pi_{0}
\end{aligned}
$$

Right-tailed test
Left-tailed test

$$
\begin{array}{lll}
H_{0}: \pi \leq \pi_{0} \\
H_{1}: \pi>\pi_{0}
\end{array} \quad \text { OR } \quad \begin{aligned}
& H_{0}: \pi \geq \pi_{0} \\
& H_{1}: \pi<\pi_{0}
\end{aligned}
$$

- The Test Statistics:

$$
z_{\text {test }}=\frac{p-\pi_{0}}{\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{n}}} \sim z_{\alpha} \quad \text { where }\left\{\begin{array}{l}
p=\frac{x}{n} \text { - sample proportion } \\
\pi_{0} \text { - given population proportion }
\end{array}\right.
$$

Example 6

An attorney claims that at least 25% of all lawyers advertise. A sample of 200 lawyers in a certain city showed that 63 had used some form of advertising. At $\alpha=0.05$, is there enough evidence to support the attorney's claim?

Solution:

Step 1: X is the number of lawyers advertise

$$
\begin{aligned}
& \left.H_{0}: \pi \geq 0.25 \quad \text { (claim }\right) \\
& H_{1}: \pi<0.25
\end{aligned}
$$

Example 6: solution

Step 2: Since $n=200$ and $x=63$, then $p=\frac{63}{200}=0.315$.

The test statistic is $z_{\text {test }}=\frac{0.315-0.25}{\sqrt{\frac{(0.25)(0.75)}{200}}}=2.1229$.

Step 3: Given $\alpha=0.05$ and the test is left-tailed test, hence the critical value is $-z_{0.05}=-1.6449$.

Step 4: Since $\left(z_{\text {test }}=2.1229\right)>\left(-1.6449=-z_{0.05}\right)$, then we accept H_{0}.
Step 5: At $\alpha=0.05$, there is enough evidence to support the attorney's claim.

3.6 TEST HYPOTHESES FOR DIFFERENCE

 BETWEEN TWO POPULATIONS PROPORTION
- The hypothesis:

Type of Test	Hypothesis	Decision on Rejection
Two-tailled test	$H_{0}: \pi_{1}-\pi_{2}=\pi_{0}$	
	$H_{1}: \pi_{1}-\pi_{2} \neq \pi_{0}$	Reject H_{0} if $z_{\text {test }}<-z_{\alpha / 2}$ or $z_{\text {test }}>z_{\alpha / 2}$
Right-tailed test	$H_{0}: \pi_{1}-\pi_{2} \leq \pi_{0}$ $H_{1}: \pi_{1}-\pi_{2}>\pi_{0}$	Reject H_{0} if $z_{\text {test }}>z_{\alpha}$
	$H_{0}: \pi_{1}-\pi_{2} \geq \pi_{0}$ $H_{1}: \pi_{1}-\pi_{2}<\pi_{0}$	Reject H_{0} if $z_{\text {test }}<-z_{\alpha}$

- The Test Statistics:

$$
\begin{aligned}
& \text { If } \pi_{0} \neq 0 \text { : } \\
& z_{\text {test }}=\frac{\left(p_{1}-p_{2}\right)-\pi_{0}}{\sqrt{\frac{\pi_{1}\left(1-\pi_{1}\right)}{n_{1}}+\frac{\pi_{2}\left(1-\pi_{2}\right)}{n_{2}}}} \sim z_{\alpha} \\
& \text { If } \pi_{0}=0 \text { : } \\
& z_{\text {test }}=\frac{\left(p_{1}-p_{2}\right)}{\sqrt{p_{p}\left(1-p_{p}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sim \mathrm{Z}_{\alpha} \quad \text { where } p_{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}
\end{aligned}
$$

Example 7

An experiment was conducted in order to determine whether the increased levels of carbon dioxide (CO2) will kill the leaf-eating insects. Two containers, labeled X and Y were filled with two levels of CO2. Container Y had double of CO2 level compared to container X. Assume that 80 insect larvae were placed at random in each container. After two days, the percentage of larvae that died in container X and Y were five percent and ten percent, respectively. Do these experimental results demonstrate that an increased level of CO2 is effective in killing leaf-eating insects' larvae? Test at 1% significance level.

Example 7: solution

Step 1:

X : the number of the number of larvae that died in container X Y : the number of the number of larvae that died in container Y
$H_{0}: \pi_{Y}-\pi_{X} \leq 0$
$H_{1}: \pi_{Y}-\pi_{X}>0$ (claim)
Step 2:

Statistic	Y	X
n	80	80
p	0.1	0.05
x	8	4

The test statistic is

$$
z_{\text {test }}=\frac{\left(p_{Y}-p_{X}\right)-\pi_{0}}{\sqrt{P_{p}\left(1-P_{p}\right)\left(\frac{1}{n_{Y}}+\frac{1}{n_{X}}\right)}}=\frac{(0.1-0.05)-0}{\sqrt{0.075(1-0.075)\left(\frac{1}{80}+\frac{1}{80}\right)}}=1.2006
$$

where $P_{p}=\frac{x_{Y}+x_{X}}{n_{Y}+n_{X}}=\frac{8+4}{80+80}=0.075$

Example 7: solution

Step 3: Given $\alpha=0.01$ and the test is right-tailed test, hence the critical value is $z_{0.01}=2.3263$.

Step 4: Since $\left(z_{\text {tett }}=1.2006\right)<\left(z_{0.01}=2.3263\right)$, then we failed to reject H_{0}.
Step 5: At $\alpha=0.01$, there is no significant evidence to support that an increased level of carbon dioxide is effective in killing higher percentage of leaf-eating insects' larvae.

3.7 TEST HYPOTHESES FOR A POPULATION VARIANCE

- The hypothesis:

Type of Test Hypothesis	Decision on Rejection Reject H_{0} if	
Two-tailed test $\begin{aligned} & H_{0}: \sigma^{2}=\sigma_{0}^{2} \\ & H_{1}: \sigma^{2} \neq \sigma_{0}^{2} \end{aligned}$	$\begin{aligned} & \chi_{\text {test }}^{2}<\chi_{1-\alpha / 2, n-1}^{2} \text { or } \\ & \chi_{\text {test }}^{2}>\chi_{\alpha / 2, n-1}^{2} \end{aligned}$	
Right-tailed test $\begin{aligned} & H_{0}: \sigma^{2} \leq \sigma_{0}^{2} \\ & H_{1}: \sigma^{2}>\sigma_{0}^{2} \end{aligned}$	$\chi_{\text {test }}^{2}>\chi_{\alpha, n-1}^{2}$	
Left-tailed test $\begin{aligned} & H_{0}: \sigma^{2} \geq \sigma_{0}^{2} \\ & H_{1}: \sigma^{2}<\sigma_{0}^{2} \end{aligned}$	$\chi_{\text {test }}^{2}<\chi_{1-\alpha, n-1}^{2}$	

- The Test Statistics:

$\chi_{\text {test }}^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}} \sim \chi_{\alpha, v=n-1}^{2}$
s^{2} is the sample variance, σ_{0}^{2} is the given variance

Example 8

Listed below are waiting times (in minutes) of customers at a bank.

$$
\begin{array}{llllll}
6.5 & 6.8 & 7.1 & 7.3 & 7.4 & 7.7
\end{array}
$$

The management will open more teller windows if the standard deviation of waiting times (in minutes) is at least 0.9 minutes. Is there enough evidence to open more teller windows at $\alpha=0.01$?

Example 8: solution

Step 1: X is waiting times (in minutes) of customers at a bank

$$
\begin{aligned}
& H_{0}: \sigma^{2} \geq 0.9^{2} \text { minutes } \quad \text { (open more teller windows) } \\
& H_{1}: \sigma^{2}<0.9^{2} \text { minutes }
\end{aligned}
$$

Step 2: $n=6$ customers $\bar{x}=7.13$ minutes $s=0.43$ minutes

The test statistic is $\quad \chi_{\text {test }}^{2}=\frac{(n-1) s^{2}}{\sigma_{0}}=\frac{(6-1) 0.43^{2}}{0.9^{2}}=1.1414$

Step 3: Given $\alpha=0.01$ and the test is left-tailed test, hence the critical value is $\chi_{0.99,5}^{2}=0.554$.

Step 4: Since $\left(\chi_{\text {test }}^{2}=1.1414\right)>\left(\chi_{0.99,5}^{2}=0.554\right)$, then we failed to reject H_{0}.
Step 5: At $\alpha=0.01$, there is enough evidence to open more teller windows.

3.8 TEST HYPOTHESES FOR THE RATIO OF TWO POPULATION VARIANCES

- The hypothesis:

Type of Test	Hypothesis	Decision on Rejection
Two-tailled test	$H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$	Reject H_{0} if $f_{\text {test }}<f_{1-\alpha / 2, n_{1-1}, n_{2-1}}$ or $f_{\text {test }}>f_{\alpha / 2, n_{1-1}, n_{2-1}}$
	$H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$	where $f_{1-\frac{\alpha}{2}, n_{1-1}, n_{2-1}}=\frac{1}{f_{\frac{\alpha}{2}, n_{2}-1, n_{1}-1}}$
Right-tailed test	$H_{0}: \sigma_{1}^{2} \leq \sigma_{2}^{2}$ $H_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}$	Reject H_{0} if $f_{\text {test }}>f_{\alpha, n_{1-1}, n_{2-1}}$
Left-tailed test	$H_{0}: \sigma_{1}^{2} \geq \sigma_{2}^{2}$	Reject H_{0} if $f_{\text {test }}<f_{1-\alpha, n_{1-1}, n_{2-1}}$
	$H_{1}: \sigma_{1}^{2}<\sigma_{2}^{2}$	where $f_{1-\alpha, n_{1-1}, n_{2-1}}=\frac{1}{f_{\alpha, n_{2}-1, n_{1}-1}}$

- The Test Statistics:

$$
f_{t e s t}=\frac{s_{1}^{2}}{s_{2}^{2}} \sim f_{v_{1}, v_{2}} \quad \text { where } v_{1}=n_{1}-1, \quad v_{2}=n_{2}-1
$$

Example 9

A manager of computer operations of a large company wants to study the computer usage of two departments within the company. The departments are Human Resource Department and Research Department. The processing time (in seconds) for each job is recorded as follows:

Human Resource	9	3	8	7	12	
Research	4	13	10	9	9	6

Is there any difference in the variability of processing times for the two departments at $\alpha=0.05$.

Example 9: solution

Step 1: $\quad X_{1}$: processing time (in seconds) for each jobs from for Human Resource Department X_{2} : processing time (in seconds) for each jobs from for Research Department

$$
\begin{aligned}
& \left.H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad \text { (claim }\right) \\
& H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{aligned}
$$

Step 2: $\quad n_{1}=5, \quad \bar{x}_{1}=7.8, \quad s_{1}=3.3$
$n_{2}=6, \quad \bar{x}_{1}=8.5, \quad s_{1}=3.1$
The test statistic is $F_{\text {test }}=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{3.3^{2}}{3.1^{2}}=1.1332$
Step 3: Given $\alpha=0.05$ and the test is two-tailed test, hence the critical value are

$$
\begin{aligned}
& F_{\frac{\alpha}{2}, n_{1}-1, n_{2}-1}=F_{0.025,4,5}=7.3879 \\
& F_{1-\frac{\alpha}{2}, n_{1}-1, n_{2}-1}=\frac{1}{F_{\frac{\alpha}{2}, n_{2}-1, n_{1}-1}}=F_{0.975,4,5}=\frac{1}{F_{0.025,5,4}}=\frac{1}{9.3645}=0.1068
\end{aligned}
$$

Example 9: solution

Step 4: Since $\left(F_{0.975,4,5}=0.1068\right)<\left(f_{\text {test }}=1.1332\right)<\left(F_{0.025,4,5}=7.3879\right)$, then we failed to reject H_{0}.

Step 5: At $\alpha=0.05$, there is no difference in the variability of processing times for the two departments.

3.9 P-Values IN HYPOTHESIS TESTING

The P-value (Probability value) is the smallest level of significance that would lead to rejection of the null hypothesis with the given data

- Finding the P-value

Statistical Table	Calculator (Casio fx-570 MS)

Procedures of Hypothesis Testing using P-Value Approach

Step 1: Formulate a hypothesis and state the claim

Two-tailed test

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \\
& H_{1}: \theta \neq \theta_{0}
\end{aligned}
$$

Right-tailed test

$$
\begin{array}{ll}
H_{0}: \theta \leq \theta_{0} & H_{0}: \theta \geq \theta_{0} \\
H_{1}: \theta>\theta_{0} & H_{1}: \theta<\theta_{0}
\end{array}
$$

Left-tailed test

Step 2: Choose the appropriate test statistic, and calculate the sample test statistic value.

Step 3: Find the P-value
Step 4: Make a decision to reject or not to reject the H_{0}
If P - value $\leq \alpha \Rightarrow$ Reject H_{0}
If P - value $>\alpha \Rightarrow$ Do not Reject H_{0}
Step 5: Draw a conclusion to reject or to accept the claim or statement.

Example 10

Most water-treatment facilities monitor the quality of their drinking water on an hourly basis. One variable monitored is pH , which measures the degree of alkalinity or acidity in the water. A pH below 7.0 is acidic, above 7.0 is alkaline and 7.0 is neutral. One water-treatment plant has target a pH of 8.5 (most try to maintain a slightly alkaline level). The mean and standard deviation of 1 hour's test results based on 31 water samples at this plant are 8.42 and 0.16 respectively. Does this sample provide sufficient evidence that the mean pH level in the water differs from 8.5? Use a 0.05 level of significance. Assume that the population is approximately normally distributed. [Example 3]

Solve this problem using P-value approach.

Example 11: solution

By considering Example 3.3, the P-value is calculated manually as follows.
Step 1: Formulate a hypothesis and state the claim.

$$
\begin{aligned}
& H_{0}: \mu=8.5 \\
& H_{1}: \mu \neq 8.5
\end{aligned}
$$

Step 2: Choose the appropriate test statistic and calculate the sample test statistic value.
Since σ^{2} is unknown, i.e. $s^{2}=0.16^{2}$, the test statistic is

$$
z_{\text {test }}=\frac{8.42-8.5}{\frac{0.16}{\sqrt{31}}}=-2.7839
$$

Step 3: Find the \boldsymbol{P}-value. By using calculator
(1) area corresponding to the z test value (two-tailed test):

$$
P(Z<-2.7839)+P(Z>2.7839)=2 \times R(2.7839)=0.00538
$$

(2) $\quad P$-value $=0.00538$

Example 11: solution

Step 4: Make a decision to reject or not to reject the H_{0} Since $(P$-value $=0.00538)<(\alpha=0.05)$, then we reject H_{0}

Step 5: Draw a conclusion to reject or to accept the claim
At 10% significance level, the sample provide sufficient evidence that the mean pH level in the water differs from 8.5

P-value Using Excel - Test For Mean

Step 1:
Click Menu Data \rightarrow Data Analysis \rightarrow Descriptive Statistics \rightarrow click OK

Step 2:

a) The commands for \boldsymbol{t}-test are
(i) t-test $=\left(\right.$ Mean $\left.-\mu_{0}\right) /$ Standard Error
(ii) P-value for a two-tailed test $=$ T.DIST.2T(ABS(t-test), degrees of freedom)
P-value for a right-tailed test $=$ T.DIST.RT((ABS(t-test), degrees of freedom)
P-value for a left-tailed test $=$ T.DIST $(\operatorname{ABS}(t$-test $)$, degrees of freedom, 1$)$

Note: Standard Error is a standard deviation divided by the square root of the number of data which can be written as s.e. $=\frac{\sigma}{\sqrt{n}}$.

Example 11

A petroleum company is studying to buy an additive for improving the distilled product. The company estimates the cost of the additive, which is RM1 million for 5 tonnes. Ten consultant companies submitted their tenders with the following estimates (in million RM):

```
0.97}0.9
```

Do you think the petroleum company over estimates the cost of the additive? Give your reason. Use P-value method.

Example 11: solution

Step 1: Formulate the hypothesis

$$
H_{0}: \mu_{C} \geq 1
$$

$H_{1}: \mu_{C}<1$ (claim: company over estimate the cost)

Step 2: Key in the data, select data \rightarrow data analysis \rightarrow Descriptive Statistics \rightarrow click $O K$

Output from Excel:

Column1		
Mean	1.175	
Standard Error	0.080942366	
Median	1.1	
Mode	0.97	The values highlighted will be used to
Standard Deviation	0.255962237	calculate t-test
Sample Variance	0.065516667	
Kurtosis	0.524938867	
Skewness	1.172718741	t-test and P-value are calculated using
Range	0.75	Excel command as follows:
Minimum	0.95	t-test $=(1.175-1) / 0.080942366$
Maximum	1.7	
Sum	11.75	Since the case is t-test and left-tailed
Count	10	test, P-value $=$ T.DIST(2.162032171,9,1)
Confidence Level(95.0\%)	0.183104353	
t-test	2.162032171	
P-value	0.970563811	

Step 3: $\quad P$-value $=0.9706$
Step 4: Since $(P$-value $=0.9706)>(\alpha=0.05)$, then we do not reject H_{0}.
Step 5: At $\alpha=0.05$, there is not enough evidence to support the claim that the petroleum company over estimate the cost of the additive.

P-value Using Excel - Test For Difference Mean

Step 1: Test the difference in variability --> F.TEST(data set 1, data set 2)
Step 2: Click Menu Data--> Data Analysis--> Choose the appropriate test
(i.e.: t-Test: Two-Sample Assuming Unequal Variances)--> click ok

Step 3: Variable 1 range--> select the data set 1
Variable 2 range--> select the data set 2
Hypothesized mean difference--> value of μ o
Alpha--> value of significance level, α
Step 4:
P-value for a two-tailed test $=\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tails (depends on distribution used)
P-value for a right-tailed test $=P(T<=t)$ one-tail (depends on distribution used)
P-value for a left-tailed test $=1-\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail (depends on distribution used)

Example 12

A company is considering installing a new machine to assemble its product. The company is considering two types of machine, Machine A and Machine B but it will by only one machine. The company will install Machine B if the mean time taken to assemble a unit of the product is less than Machine A. Table below shows the time taken (in minutes) to assemble one unit of the product on each type of machine.

Machine A	23	26	19	24	27	22	20	18
Machine B	21	24	23	25	24	28	24	23

At 10% significance level, test the difference in variability between the two types of machines. Which machine should be installed by the company to assemble its product?

Example 12: solution

Step 1: Formulate the hypothesis

Example 12: solution

Step 2: Key in the data in Excel and choose the t-Test: Two-Sample Assuming equal Variances

	machine A	Machine B
Mean	22.375	24
Variance	10.55357	4
Observations	8	8
Pooled Variance	7.276786	
Hypothesized Mean		
Difference	0	
df	14	
t Stat	-1.2048	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.124127	
t Critical one-tail	1.34503	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.248254	
t Critical two-tail	1.76131	

Step 3: The test is one-tailed test, hence P-value $=0.1242$
Step 4: Since $(P-$ value $=0.1242)>(0.1=\alpha)$, then we do not reject H_{0}.
Step 5: At 10\% significance level, machine A should be installed.

P-value Using Excel - Test For Paired Data

Step 1: Click Menu Data--> Data Analysis--> Choose the appropriate test (i.e.: t-Test: Paired Two Sample for Means)--> click ok

Step 2: Variable 1 range--> select the data set 1
Variable 2 range--> select the data set 2
Hypothesized mean difference--> value of μ o
Alpha--> value of significance level, α

Step 3:

P-value for a two-tailed test $=P(T<=t)$ two-tails (depends on distribution used)
P-value for a right-tailed test $=\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail (depends on distribution used)
P-value for a left-tailed test $=1-\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail (depends on distribution used)

Example 13: refer data example 5

 Enoineering : Technology. Creathe$H_{0}: \mu_{D} \leq 0$
$H_{1}: \mu_{D}>0$ (wise to install the new gadget)

3.10 RELATIONSHIP BETWEEN HYPOTHESIS TEST \& CONFIDENCE INTERVAL

There is a relationship between the confidence interval and hypothesis test about the parameter, θ. Let say (a, b) is a $(1-\alpha) 100 \%$ confidence interval for the θ, the test of the size α of the hypothesis

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \\
& H_{1}: \theta \neq \theta_{0}
\end{aligned}
$$

will lead to rejection of H_{0} if and only if θ_{0} is not in the $(1-\alpha) 100 \%$ confidence interval (a, b).

Notes: This relationship should be checked for two-tailed test only.

Example 14

By considering Example 3 again, the 95% confidence interval for μ is

$$
\begin{aligned}
& =8.42 \pm z_{0.025}\left(\frac{0.16}{\sqrt{31}}\right) \\
& =8.42 \pm 1.9600(0.0287) \\
& =8.42 \pm 0.0563 \\
& =(8.3637,8.4763)
\end{aligned}
$$

Since $\mu=8.5$ is not included in this interval, the H_{0} is rejected. So, the decision making or conclusion is the same as in Example 3.

REFERENCES

1. Montgomery D. C. \& Runger G. C. 2011. Applied Statistics and Probability for Engineers. $5^{\text {th }}$ Edition. New York: John Wiley \& Sons, Inc.
2. Walpole R.E., Myers R.H., Myers S.L. \& Ye K. 2011. Probability and Statistics for Engineers and Scientists. 9th Edition. New Jersey: Prentice Hall.
3. Navidi W. 2011. Statistics for Engineers and Scientists. $3^{\text {rd }}$ Edition. New York: McGraw-Hill.
4. Bluman A.G. 2009. Elementary Statistics: A Step by Step Approach. $7^{\text {th }}$ Edition. New York: McGraw-Hill.
5. Triola, M.F. 2006. Elementary Statistics.10 ${ }^{\text {th }}$ Edition. UK: Pearson Education.
6. Satari S. Z. et al. Applied Statistics Module New Version. 2015. Penerbit UMP. Internal used.

Thank You
NEXT: CHAPTER 4 ANALYSIS OF VARIANCE

