
CAO – Chapter 4 – P1. Mritha Ramalingam

By

Dr. Mritha Ramalingam

Faculty of Computer Systems & Software Engineering
mritha@ump.edu.my

BCN1043

http://ocw.ump.edu.my/

CAO – Chapter 4 – P1. Mritha Ramalingam

• Dr. Mohd Nizam Mohmad Kahar (mnizam@ump.edu.my)

• Jamaludin Sallim (jamal@ump.edu.my)

• Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)

• Dr. Mritha Ramalingam (mritha@ump.edu.my)

Faculty of Computer Systems & Software Engineering

authors

CAO – Chapter 4 – P1. Mritha Ramalingam

Chapter 4:

Assembly Level Machine

Organization

CAO – Chapter 4 – P1. Mritha Ramalingam

Learning outcomes

Understand the assembly language instruction formats, such as

addresses per instruction and variable length vs. fixed length formats

and how subroutine calls are handled at the assembly level.

Able to write assembly language program segments.

CAO – Chapter 4 – P1. Mritha Ramalingam

CHAPTER 4

ASSEMBLY LANGUAGE

• Introduction

• The Computer Organization

• Instruction Format

• Addressing Mode

• DEBUG program

CAO – Chapter 4 – P1. Mritha Ramalingam

Introduction

Levels of Programming Languages

1) Machine Language
• Consists of individual instructions that will be executed by the CPU one at

a time

2) Assembly Language (Low Level Language)
• for a specific family of processors (different processor groups/family has

different Assembly Language)

• contains pneumonic instructions related with 1-to-1 machine instructions.

3) High-Level Language
• e.g. C, C++, V-basic

• Can eliminate the technicalities

• High level statements when compiled, produces many low-level
instructions

CAO – Chapter 4 – P1. Mritha Ramalingam

Advantages

1. How a program can interface with BIOS,
processor, and operating system

2. how to represent and store data in external
memory devices.

3. how a processor can access, execute instructions

4. how a program can access external devices.

CAO – Chapter 4 – P1. Mritha Ramalingam

Reasons to use Assembly Language

1. less memory time and execution time than high–level language.

2. perform high technical tasks

3. recoding in assembly language is time-critical.

4. Self developing of Resident programs and interrupt service routines

CAO – Chapter 4 – P1. Mritha Ramalingam

To perform a task, the CPU involves:

1) Execution Unit (EU)

2) Bus Interface Unit (BIU)

EU

• EU is responsible for program execution

• Includes ALU, a Control Unit and registers

BIU

• Delivers data and instructions to the EU.

• manages control unit of bus, segment register and instruction queue.

CAO – Chapter 4 – P1. Mritha Ramalingam

AH AL

BH BL

CH CL

DH DL

SP

BP

SI

DI

AX

CX

DX

BX

EU : Execution Unit BIU : Bus Interface Unit

CS

Program Control

DS

SS

ES

ALU

CU

Flag register

1

2

3

Bus

Control

Unit

4

n

Bus

Instruction Pointer

Instruction

Queue

(Program Counter)

CAO – Chapter 4 – P1. Mritha Ramalingam

Addressing Data in Memory

• Intel Personal Computer (PC) addresses its
memory according to bytes. (Every byte has a
unique address beginning with 0)

• Depending to the model of a PC, CPU can access
1 or more bytes at a time

• Processor (CPU) keeps data in memory in
reverse byte sequence (reverse-byte sequence:
low order byte in the low memory address and
high-order byte in the high memory address)

CAO – Chapter 4 – P1. Mritha Ramalingam

Example : consider value 052916 (0529H)

register

memory

• When the processor takes data (a word or 2 bytes), it will
re-reverse the byte to its actual order 052916

05 29

29 05

Address 04A2616
(low-order/least significant byte)

Address 04A2716
(high-order/most significant byte)

2 bytes 05 and 29

CAO – Chapter 4 – P1. Mritha Ramalingam

Segment And Addressing

• Segments are special areas determined by programmer
in the memory

(i) Code Segment (CS)

• machine instructions to be executed

• CS register holds the starting address of this segment

CAO – Chapter 4 – P1. Mritha Ramalingam

(ii) Data Segment (DS)

• Includes defined data, constants and works areas.

• DS register stores starting address of DS

(iii) Stack Segment (SS)

• Saves temporarily data.

• SS register holds the starting address a segment

CAO – Chapter 4 – P1. Mritha Ramalingam

Address

Address

Address

Stack segment

Data segment

Code segment

Contains the beginning

address of each segment

Segment register

(in CPU)

memory

(MM)

SS Register

DS Register

CS Register

CAO – Chapter 4 – P1. Mritha Ramalingam

Segment Offsets

• The distance in bytes from the segment address to
another location within the segment is expressed as
an offset (or displacement).

• Thus the first byte of the code segment is at offset
00, the second byte is at offset 01 and so forth.

• To address any memory location of a segment, the
actual address is computed as

 actual address = segment address + offset

CAO – Chapter 4 – P1. Mritha Ramalingam

Eg:

A starting address of data segment is 038E0H, so
the value in DS register is 038E0H. An instruction
references a location with an offset of 0032H bytes
from the start of the data segment.

 the actual address = DS segment address +
offset

= 038E0H + 0032H

= 03912H

CAO – Chapter 4 – P1. Mritha Ramalingam

Registers

• Registers are used to control instructions being
executed, to handle addressing of memory

• Registers of Intel Processors can be categorized
into:

1. Segment register

2. Pointer register

3. General purpose register

4. Index register

5. Flag register

CAO – Chapter 4 – P1. Mritha Ramalingam

i) Segment register

There are 6 segment registers :

(a) CS register
• Contains the starting address of program’s code segment.
• The content of the CS register is added with the content in

the Instruction Pointer (IP) register to obtain the address of
the instruction that is to be fetched for execution.

(Note: common name for IP is PC (Program Counter))

(b) DS register
• Contains the starting address of a program’s data segment.
• The address in DS register will be added with the value in

the address field (in instruction format) to obtain the real
address of the data in data segment.

CAO – Chapter 4 – P1. Mritha Ramalingam

(c) SS Register
• Contains the starting address of the stack segment.

• The content in this register will be added with the content in the Stack
Pointer (SP) register to obtain the required word.

(d) ES (Extra Segment) Register
• Used by some string (character data) operations to handle memory

addressing

• ES register is associated with the Data Index (DI) register.

(e) FS and GS Registers
• Additional extra segment registers introduced in 80386 for handling

storage requirement.

CAO – Chapter 4 – P1. Mritha Ramalingam

(ii) Pointer Registers

• There are 3 pointer registers in an Intel PC :

(a) Instruction Pointer register

• The 16-bit IP register contains the offset address or
displacement for the next instruction that will be executed
by the CPU

• The value in the IP register will be added into the value in
the CS register to obtain the real address of an instruction

CAO – Chapter 4 – P1. Mritha Ramalingam

Example :
The content in CS register = 39B40H
The content in IP register = 514H

next instruction address: 39B40H
+ 514H

. 3A054H
• Intel 80386 introduced 32-bit IP, known as EIP

(Extended IP)

CAO – Chapter 4 – P1. Mritha Ramalingam

(b) Stack Pointer Register (Stack Pointer (SP))

• The 16-bit SP register stores the displacement value that

will be combined with the value in the SS register to

obtain the required word in the stack

• Intel 80386 introduced 32-bit SP, known as ESP (Extended

SP)

Example:

Value in register SS = 4BB30H

Value in register SP = + 412H

4BF42H

(c) Base Pointer Register

• The 16-bit BP register facilitates referencing parameters, which

are data and addresses that a program passes via a stack

• The processor combines the address in SS with the offset in BP

CAO – Chapter 4 – P1. Mritha Ramalingam

(iii) General Purpose Registers

There are 4 general-purpose registers, AX, BX, CX, DX:

(a) AX register

• Acts as the accumulator and is used in operations that involve input/output

and arithmetic

• The diagram below shows the AX register with the number of bits.

8 bit 8 bit

32 bits

AH AL

AX

EAX

EAX : 32 bit

AX : 16 bit (rightmost 16-bit portion of EAX)

AH : 8 bit => leftmost 8 bits of AX (high portion)

AL : 8 bit => rightmost 8 bit of AX (low portion)

CAO – Chapter 4 – P1. Mritha Ramalingam

(b) BX Register

o Known as the base register since it is the only this general

purpose register that can be used as an index to extend addressing.

o This register also can be used for computations

o BX can also be combined with DI and SI register as a base

registers for special addressing like AX, BX is also consists of EBX,

BH and BL

8 bit 8 bit

32 bits

BX

EBX

BH BL

CAO – Chapter 4 – P1. Mritha Ramalingam

(c) CX Register

• known as count register

• may contain a value to control the number of times a loops is

repeated or a value to shift bits left or right

• CX can also be used for many computations

• Number of bits and fractions of the register is like below :

8 bit 8 bit

32 bits

CX

CH CL

ECX

CAO – Chapter 4 – P1. Mritha Ramalingam

(d) DX Register

• Known as data register

• Some I/O operations require its use

• Multiply and divide operations that involve large values assume

the use of DX and AX together as a pair to hold the data or

result of operation.

• Number of bits and the fractions of the register is as below :

8 bit 8 bit

32 bits

DX

DH DL

EDX

CAO – Chapter 4 – P1. Mritha Ramalingam

(iv) Index Register

There are 2 index registers, SI and DI

(a) SI Register

o Needed in operations that involve string (character) and is

always usually associated with the DS register

o SI : 16 bit

o ESI : 32 bit (80286 and above)

(b) DI Register

o Also used in operations that involve string (character) and it

is associated with the ES register

o DI : 16 bit

o EDI : 32 bit (80386 and above)

CAO – Chapter 4 – P1. Mritha Ramalingam

(v) FLAG Register

o Flags register contains bits that show the status of some

activities

o Instructions that involve comparison and arithmetic will

change the flag status where some instruction will refer to

the value of a specific bit in the flag for next subsequent

action

- 9 of its 16 bits indicate the current status of the computer

and the results of processing

- the above diagram shows the stated 9 bits

O D I T S Z A P C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CAO – Chapter 4 – P1. Mritha Ramalingam

O D I T S Z A P C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OF (overflow): indicate overflow of a high-order (leftmost) bit following arithmetic

DF (direction): Determines left or right direction for moving or comparing string

(character) data

IF (interrupt): indicates that all external interrupts such as keyboard entry are to be

processed or ignored

TF (trap): permits operation of the processor in single-step mode. Usually used in

“debugging” process

SF (sign): contains the resulting sign of an arithmetic operation (0 = +ve, 1 = -ve)

ZF (zero): indicates the result of an arithmetic or comparison operation (0 = non

zero; 1 = zero result)

AF (auxillary carry): contains a carry out of bit 3 into bit 4 in an arithmetic

operation, for specialized arithmetic

PF (parity): indicates the number of 1-bits that result from an operation. An even

number of bits causes so-called even parity and an odd number causes odd parity

CF (parity): contains carries from a high-order (leftmost) bit following an arithmetic

operation; also, contains the content of the last bit of a shift or rotate operation.

CAO – Chapter 4 – P1. Mritha Ramalingam

Will continue…

