## BCN 1043

## COMPUTER ARCHITECTURE \& ORGANIZATION

By<br>Dr. Mritha Ramalingam

Faculty of Computer Systems \& Software Engineering
mritha@ump.edu.my

## AUTHORS

- Dr. Mohd Nizam Mohmad Kahar (mnizam@ump.edu.my)
- Jamaludin Sallim (jamal@ump.edu.my)
- Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)
- Dr. Mritha Ramalingam (mritha@ump.edu.my)

Faculty of Computer Systems \& Software Engineering

## BCN 1043

## COMPUTER ARCHITECTURE 8 ORGANIZATION

Chapter 3 continues...

## COMBINATIONAL CIRCUITS

## Combinational Circuits

- We will combine logic gates together for calculations
- Example: $\sim\left(A^{*} B\right)$ and $\sim\left(C^{*} D\right)$ with an OR gate
- The resulting circuit is a combinational circuit
- Electrical current flows from one gate to the next

- By combining gates, we can compute a boolean expression
- What we want to do is:
- Derive the boolean expression for some binary calculation (e.g., addition)
- Then build the circuit using the various logic gates
- This is how we will build the digital circuits that make up the ALU (arithmetic-logic unit) and other parts of the computer


## An Example: Half Adder

- There are 4 possibilities when adding 2 bits together:
$>0+0 \quad 0+1 \quad 1+0 \quad 1+1$
- In the first case, we have a sum of 0 and a carry of 0
- In the second and third cases, we have a sum of 1 and a carry of 0
- In the last case, we have a sum of 0 and a carry of 1
- These patterns are demonstrated in the truth table above to the right
$>$ Note: sum computes same as XOR
$>$ carry computes the same as AND
$>$ Adder is built using just one XOR and one AND gate

| Inputs |  | Outputs |  |
| :---: | :---: | :---: | :---: |
| $x$ | $y$ | Sum | Carry |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

The truth table for Sum and Carry and a circuit to compute these


## Full Adder

- The half adder really only does half the work
- adds 2 bits, but only 2 bits
- If we want to add 2 n -bit numbers, we need to also include the carry in from the previous half adder
- So, our circuit becomes more complicated
- In adding 3 bits (one bit from $x$, one bit from $y$, and the carry in from the previous addition), we have 8 possibilities
- The sum will either be 0 or 1 and the carry out will either be 0 or 1

| Inputs |  |  | Outputs |  |
| :---: | :---: | :---: | :---: | :---: |
| $x$ | $y$ | Carry <br> In | Sum | Carry <br> Out |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 |  |  |  |  |

## Building a Full Adder Circuit

- The sum is 1 only if one of $x, y$ and carry in are 1 , or if all three are 1 , the sum is 0 otherwise
- The carry out is 1 if two or three of $x, y$ and carry in were 1,0 otherwise
- The circuit to the right captures this by using 2 XOR gates for Sum and 2 AND gates and an OR gate for Carry Out
- We combine several full adders together to build an Adder, as shown below:


A 16-bit adder, comprised of 16 Full Adders connected so that each full adder's carry out becomes the next full adder's carry in

## Complementor

- Let's design another circuit to take a two's complement number and negate it (complement it)
- Change a positive number to a negative number
- Change a negative number to a positive number
- Recall to do this, you flip all of the bits and add 1
- To flip the bits, we pass each bit through a NOT gate
- To add one, send it to a full adder with the other number being 000... 001



## Adder/Subtractor

## - Recall from chapter 2

- two's complement subtraction can be performed by negating the second number and adding it to the first
- We revise our adder as shown to the right
- It can now perform addition (as normal)
- Or subtraction by sending the second number through the complementor

The switch (SW) is a multiplexer, covered in a few slides


OF = overflow bit
SW $=$ Switch (select addition or subtraction)

## Comparator

- We have covered + and -, how about <, >, =
- To compare A to B, we use a simple tactic
- Compute A - B and look at the result
- if the result is - , then $A<B$

- if the result is 0 , then $A=B$
- if the result is + , then $A>B$
- if the result is not 0 , then $A!=B$
- how do we determine if the result is -? look at the sign bit, if the sign bit is 1 , then the result is negative and $A<B$
- how do we determine if the result is 0 ? are all bits of the result 0 ? if so, then the result is 0 and $A=B$
- we will build a zero tester which is simply going to NOR all of the bits together
- how do we determine if the result is +? if the result of $A-B$ is not negative and not 0 , it must be positive, so we negate the results of the first two and pass them through an AND gate
- The comparator circuit is shown above (notice that the circuit outputs 3 values, only 1 of which will be a 1 , the others must be 0 )
- NOTE: to compute !=, we can simply negate the Zero output


## Multiplier

- The circuit below is a multiplication circuit
- Given two values, the multiplicand and the multiplier, both stored in temporary registers
- The addition takes place by checking the Q0 bit and deciding whether to add the multiplicand to the register A or not, followed by right shifting the carry bit, A and Q together
- shift/add control logic
- set counter = n
- compare Q0 to 1
- if equal, signal adder to add
- signal the shifter to shift
- decrement counter
- repeat until counter $=0$



## A Decoder

- The Decoder is a circuit that takes a binary pattern and translates it into a single output
- This is often used to convert a binary value into a decimal value
- For an n-bit input, there are $2^{n}$ outputs
- Below is a 2 input -4 output decoder
- if input $=01$, the second line ( $x^{* \sim} y$ ) on the right has current
- the line 01 would be considered line 1 , where we start counting at 0



## Octal-to-Binary Encoder



2-to-4 Decoder

| E | $\mathrm{A}_{1}$ | $\mathrm{~A}_{0}$ | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | d | d | 1 | 1 | 1 | 1 |



## A Multiplexer

- Multiplexer (abbreviated as MUX) is used to select from a group of inputs which one to pass on as output
- Here, 1 of 4 single-bit inputs is passed on using a 2-bit selector ( 00 for input 0,01 for input 1,10 for input 2, 11 for input 3)
- While this circuit is more complex than previous ones, this is simplified for a MUX - imagine what it would look like if we wanted to pass on 16 bits from 1 of 4 inputs


A related circuit is the de-multiplexer (DEMUX) - it receives 1 input and a select and passes the input onto one of several outputs

## A Simple 2-bit ALU

Putting all these ideas together

We have a 2-bit ALU

Given 2 values, $A$ and $B$, each of which are 2 bits (A0, A1, $\mathrm{B} 0, \mathrm{~B} 1)$ and a selection from the control unit (f0, f1)

This circuit computes
$\mathrm{A}+\mathrm{B}$ (if f0 f1 = 00)
NOT A (if f0 f1 = 01)
A OR B (if f0 f1 = 10)
A AND B (if f0 f1 = 11)

And passes the result out as C0 C1 along with overflow if the addition caused an overflow

 Malaysia PAHANG

## SEQUENTIAL CIRCUITS

## Sequential Circuits

- All of the previous circuits were combinational circuits
- Current flowed in at one end and out the other
- Combinational circuits cannot retain values
- If we want to build a kind of memory, we need to use a sequential circuit
- In a sequential circuit, current flows into the circuit and stays there
- This is done by looping the output back into the input
- Sequential circuits will be used to implement 1-bit storage
- We can then combine 1-bit storage circuits into groups for n-bit storage (registers, cache)
- These circuits will be known as flip-flops because they can flip from one state (storing 1) to another (storing 0) or vice versa


## The Clock

- The clock will control when certain actions should take place
- The clock simply generates a sequence of electrical current "pulses"
- In the figure below, when the line is high, it means current is flowing, when low it means current is not flowing
- Thus, if we want to control when to shift, we connect the S input to an AND gate that includes the clock as another input


We will use the clock to control a number of things in the CPU, such as flipflop changes of state, or when ALU components should perform their operation

## An S-R Flip-Flop



| $\mathbf{S}$ | $\mathbf{R}$ | $\mathbf{Q}(\mathbf{t}+\mathbf{1})$ |
| :--- | :--- | :--- |
| 0 | 0 | $Q(\mathrm{t})$ (no change) |
| 0 | 1 | 0 (reset to 0 ) |
| 1 | 0 | 1 (set to 1 ) |
| 1 | 1 | undefined |

- The S-R flip-flop has 2 inputs and 2 outputs
- The 2 inputs represent Set (storing a 1 in the flip-flop) and Reset (storing a 0 in the flip-flop)
- It has two outputs although $Q$ is the only one we will regularly use
- To place a new value in the flip-flop, send a current over either S or $R$ depending on the value we want, to get a value, just examine Q

Note that the S-R flip-flop is not controlled by the clock
the S-R flip-flop circuit diagram and truth table are given above, and can be represented abstractly by the figure to the right


## D and JK Flip-Flops


a)

c)

| $\mathbf{D}$ | $\mathbf{Q}(\mathbf{t}+\mathbf{1})$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |

b)


| $\mathbf{J}$ | $\mathbf{K}$ | $\mathbf{Q}(\mathbf{t}+\mathbf{1})$ |
| :--- | :--- | :--- |
| 0 | 0 | $Q(t)$ (no change) |
| 0 | 1 | 0 (reset to 0 ) |
| 1 | 0 | 1 (set to 1 ) |
| 1 | 1 | $Q^{\prime}(t)$ |

a)
b)
c)


## Registers

- Since a single flip-flop stores a single bit, we combine $n$ of them to create an $n$-bit register
- However, the S-R flip-flop can be set or reset at any time, we instead want to use the system clock to determine when to change the value
- So, we will use a D flip-flop instead
- In the D flip-flop, there are 2 input lines, but they represent different things than the S-R flip-flop
- One input is the clock - the flip-flop can only change when the clock pulses
- The other input, labeled as D - is the input
- if 0 , then the flip-flop will store 0 ,
- if 1 then the flip-flop will store 1


## Registers From D Flip-Flops

To the right is a 4-bit register
Triggered by the system clock
And connected to an input bus and An output bus

Below is an 8 -bit register with a single I/O bus

(a)


## Shift and Rotate Registers

- The shift circuit we saw earlier is difficult to trace through although efficient in terms of hardware
- we can also build a special kind of register called a shift register or a rotate register by connecting SR flip flops
- this register will store a bit in each FF as any register, but the $Q$ and ${ }^{\sim} Q$ outputs are connected to the SR inputs of a neighboring FF
- below is a 4-bit right rotate (it rotates the rightmost bit to the leftmost FF, so 1001 becomes 1100 and 0001 becomes 1000)


Upon a clock pulse, each Q output is connected to the FF to the right's S input and each $\sim \mathrm{Q}$ output is connected to the FF to the right's R input, so an output of $\mathrm{Q}=1$ causes the next FF to set (become 1 ) and an output of $\sim \mathrm{Q}=1$ causes the next FF to reset (0)

## Increment Register

- The J-K flip flop is like the S-R flip flop except
$-\mathrm{J}=1$ and $\mathrm{K}=1$ flips the bit
- Flip flop only changes state on clock pulse
- Use J-K to implement an increment register - increments the value stored when it receives and Incr signal and a clock pulse

$\mathrm{J}=0, \mathrm{~K}=0$-- no change $\mathrm{J}=1, \mathrm{~K}=1$-- flip bit Otherwise, act like S-R flip flop ( $\mathrm{J}=1$, set, $\mathrm{K}=1$, reset)

Upon Incr signal and clock pulse, $\mathrm{J}=1$ and $\mathrm{K}=1$, flip this bit If this bit was 1 , then next bit receives $1-1$ to flip
If that bit was 1 , then next bit receives $1-1$ to flip
etc


## Register File

The decoder accepts
a 3-bit register number from the control unit

This along with the system clock selects the register

The data bus is used for both input and output to the selected register

A $4 \times 3$ Memory


This is a collection of flip-flops that can store 4 items (each consisting of 3 bits)

The two bit selector S0 S1 chooses which of the 4 items is desired

It should be noted that computer memory uses a different technology than flip-flops

## Chapter 3 Review

A. Logic Gates
B. Boolean Algebra
C. Combinational Circuits
A. Flip-Flops
D. Sequential Circuits
A. Memory Components

## Chapter 3 ends!

