BCN 1043

COMPUTER ARCHITECTURE \& ORGANIZATION

By
Dr. Mritha Ramalingam

Faculty of Computer Systems \& Software Engineering
mritha@ump.edu.my

AUTHORS

- Dr. Mohd Nizam Mohmad Kahar (mnizam@ump.edu.my)
- Jamaludin Sallim (jamal@ump.edu.my)
- Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)
- Dr. Mritha Ramalingam (mritha@ump.edu.my)

Faculty of Computer Systems \& Software Engineering

BCN 1043

COMPUTER ARCHITECTURE 8 ORGANIZATION

Chapter 3 continues...

SIMPLIFICATION

Simplification of Boolean function

- Reducing to lesser number of Boolean literals
- for least cost implementation
- Karnaugh Map (K-map) is a tabular method to reduce Boolean expressions.

sIMPLIFICATION: KARNAUGH MAP

K-map Terminology

- K-map is a tabular method derived from output values of Boolean function.
- minterm is a product term with all possible combinations of input variables
- E.g
- minterms of an expression with inputs x and y :

$$
\bar{x} \bar{y}, \bar{x} y, x \bar{y}, \text { and } x y
$$

- Minterms with three inputs

Minterm	X	Y	Z
$\bar{X} \bar{Y} \bar{Z}$	0	0	0
$\bar{X} \bar{Y} Z$	0	0	1
$\bar{X} Y \bar{Z}$	0	1	0
$\bar{X} Y Z$	0	1	1
$X \bar{Y} \bar{Z}$	1	0	0
$X \bar{Y} Z$	1	0	1
$X Y \bar{Z}$	1	1	0
$X Y Z$	1	1	1

K-map

- K-map is referred as a cell for each minterm.
- truth table and k-map of function $F(x, y)=x y$ is shown below

K-map

- E.g.2, $F(x, y)=x+y$
- Similar to OR gate

Kmap Simplification for Two Variables

rules for simplification :

- Group can contain only 1s; no 0s.
- Groups can occur only at right angles; no diagonal groups.
- In a group, number of 1 s must be a power of 2
- Groups need to be as large as possible.
- Groups can overlap and wrap around the sides of the Kmap.

3-variable K-map Simplification

3-variable K-map Simplification

- E.g:

$$
F(X, Y)=\bar{X} \bar{Y} Z+\bar{X} Y Z+X \bar{Y} Z+X Y Z
$$

What could be the largest group of 1 s ?

3-variable K-map Simplification riables

- Simplified Boolean function, $F(x)=z$.

$$
F(X, Y)=\bar{X} \bar{Y} Z+\bar{X} Y Z+X \bar{Y} Z+X Y Z
$$

3-variable K-map Simplification

- E.g:

$$
F(X, Y, Z)=\bar{X} \bar{Y} \bar{Z}+\bar{X} \bar{Y} Z+\bar{X} Y Z+\bar{X} Y \bar{Z}+X \bar{Y} \bar{Z}+X Y \bar{Z}
$$

$Y Z$		00	01	11	10
0	1	1	1	1	
1	1	0	0	1	

3-variable K-map Simplification

- E.g of side wrapping groups.

3-variable K-map Simplification

- Simplified function is: $F(X, Y, Z)=\bar{X}+\bar{Z}$

4-variable K-map Simplification

- With four variables, k-map can use 16 minterms

$Y Z$		00	01	11
WX	10			
00	$\bar{W} \bar{X} \bar{Y} \bar{Z}$	$\bar{W} \bar{X} \bar{Y} Z$	$\bar{W} \bar{X} Y Z$	$\bar{W} \overline{X Y} \bar{Z}$
01	$\bar{W} X \bar{Y} \bar{Z}$	$\bar{W} X \bar{Y} Z$	$\bar{W} X Y Z$	$\bar{W} X Y \bar{Z}$
11	$W X \bar{Y} \bar{Z}$	$W X \bar{Y} Z$	$W X Y Z$	$W X Y \bar{Z}$
10	$W \bar{X} \bar{Y} \bar{Z}$	$W \bar{X} \bar{Y} Z$	$W \bar{X} Y Z$	$W \bar{X} Y \bar{Z}$

4-variable K-map Simplification

$$
\begin{aligned}
F(W, X, Y, Z)= & \bar{W} \bar{X} \bar{Y} \bar{Z}+\bar{W} \bar{X} \bar{Y} Z+\bar{W} \bar{X} Y \bar{Z} \\
& +\bar{W} X Y \bar{Z}+W \bar{X} \bar{Y} \bar{Z}+W \bar{X} \bar{Y} Z+W \bar{X} Y \bar{Z}
\end{aligned}
$$

YZ		00	01	11
WX	00			
00	1	1		1
01				1
11				
10	1	1		1

4-variable K-map Simplification

- three groups
- So we will have three terms in simplified function:

F(W,X,Y,Z)= $\bar{W} \bar{Y}+\bar{X} \bar{Z}+\bar{W} Y \bar{Z}$

4-variable K-map Simplification

- E.g of group formation

Don't Care Conditions

- a circuit is designed in such a way that any particular input sets will never happen- don't care condition.
- Used while grouping for simplification

Don't Care Conditions

- Denoted by X of "d" in the K-map cell

$Y Z$				
$W X$	00	01	11	10
00	X	1	1	X
01		X	1	
11	X		1	
10			1	

Don't Care Conditions

- E.g:

$$
F(W, X, Y, Z)=W Y+Y Z
$$

Don't Care Conditions

- E.g:
$F(W, X, Y, Z)=\bar{W} Z+Y Z$

WX	00	01	11	10
00	X	1	1	\times
01		X	1	
11	X		1	
10			1	

Don't Care Conditions

- truth table of: $\quad \mathbf{F}(\mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z})=\bar{W} \mathbf{Y}+\mathbf{Y Z}$
differs from the truth table of: $\mathbf{F}(\mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z})=\overline{\mathbf{W}} \mathbf{Z}+\mathbf{Y} \mathbf{Z}$

Will continue...

