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OUTCOME

• Able to perform operation on Boolean algebra, design simple 
circuit using gates

• Understand the relationship of Digital logic with computer 
operation for example in gates vs memory
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CONTENT

• Logic Gates

• Boolean Algebra

• Combinational Circuits

– Flip-Flops

• Sequential Circuits

– Memory Components
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DIGITAL COMPUTERS

• Digital computer deals with information that is denoted by binary digits

• Think! Answer! 

• Why is it BINARY ? Why not Decimal or other number system?
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LOGIC  Circuit   

Basic Logic Circuits

• Combinational Logic circuit: output value depends only on the input values (e.g. OR, AND, etc)

• Sequential Logic Circuit: output value depends on the input values and the current state

• Gate Functions are described by:

– Truth Table

– Boolean Function

– Karnaugh Map

Gate.
.
.

Binary
Digital
Input
Signal

Binary
Digital
Output
Signal
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LOGIC GATES & BOOLEAN ALGEBRA
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Truth Tables

xy = x x + y = x x bar = NOT x

AND is true only if OR is true if either NOT inverts the bit

both inputs are true inputs are true We will denote x bar as ~x

NOR is NOT of OR NAND is NOT of AND XOR is true if both inputs differ
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Boolean Expressions

• Possible to derive Boolean expressions from Boolean operations

• Consider the expression:

 F = X + ~Y*Z

• What is it’s truth table?

Take note: Notice that it is easier to derive the truth table for the entire expression 

by breaking it into subexpressions

So first we determine ~Y

next, ~Y * Z

finally, X + ~Y*Z
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Truth Table ???

• Is to understand a logic circuit with different
permutations of inputs, with logic 1- true and logic 0-
false.

• The desired output can be achieved by a combination of
logic gates.

• truth table of two inputs is shown
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Truth Table ???
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Basic Boolean Identities
• As with algebra, there will be Boolean operations that we want to simplify

– We apply the following Boolean identities to help
• For instance, in algebra, x = y * (z + 0) + (z * 0) can be simplified to just x = y * z
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Basic Boolean Identities

DeMorgan’s Law states that ~(X*Y) = ~X+~Y

Boolean expressions are proved if the values in truth tables give 

the same values for left and right side of the equations

Here we have an example specifically to see how 

DeMorgan’s Law works
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Example 1:  use algebraic simplification rules to reduce 

~abc+~ab~c+ac

= ~abc + ~ab~c + ac 

= ~ab(c+~c)+ac (distributive law) 

= ~ab(1)+ac (inverse law) 

= ~ab+ac (identity law)

Example 2:  ab+~ac+bc = ab+~ac+bc*1 (identity) 

= ab+~ac+bc*(a+~a) (inverse) 

= ab +~ac+abc+~abc (distributive) 

= ab(1+z)+~ac (b+1) (distributive) 

= ab(1)+~ac(1) (null) 

= ab *1+~ ac *1 (absorption)

= ab +~ac (identity)
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Example 3:  (a+b)(~a+b) 

= ~a(a+b)+b(a+b) (distributive) 

= ~aa+~ab+ab+bb

(distributive)

= 0+~ab+ab+bb (inverse) 

= ~ab+ab+bb (identity) 

= b(~a+a+b) (distributive)

= b(1+b) (inverse) 

= b(1) (identity) 

= b (idempotent)
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LOGIC GATES

LOGIC GATES
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Logic Gates

Here we see the logic gates that 

represent the Boolean operations 

previously discussed

We typically represent NOR and NAND by the two on the left, 

but the two on the right are also correct

XOR looks like OR but with the 

added curved line
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Some example Circuits

Here is the truth table for this circuit

AND and OR gates can have more than 2

inputs, as seen here

Notice for ~Y, we can either use a NOT gate or

simply specify that the value is ~Y

What does this circuit 

compute? (what is F?)



CAO – Chapter 3 – P1. Mritha Ramalingam

Using only NAND

• NAND (and NOR) have unique properties different from the other boolean
operations
– This allows us to use one or more NAND gates (or one or more NOR gates) and create gates 

that can compute AND, OR and NOT
• See the examples below
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NAND Chip

Early integrated circuits were several gates on a 
single chip, you would connect this chip to other 
chips by adding wires
between the pins 

To do ~(A*B) + ~(C*D)

You would connect A and B to pins 7 and 6, C and 
D to 4 and 3, and send 5 and 2 to an NAND chip

This is a NAND chip

Prove? why did we use 
NAND
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LOGIC  CIRCUIT  DESIGN

x    y    z       F

0    0    0       0

0    0    1       1

0    1    0       0

0    1    1       0

1    0    0       1

1    0    1       1

1    1    0       1

1    1    1       1

F = x + ~yz

Boolean Algebra 

x

y

z

F

Truth
Table

Boolean
Function

Logic
Diagram
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Will continue…


