
CAO – Chapter 3 – P1. Mritha Ramalingam

By

Dr. Mritha Ramalingam

Faculty of Computer Systems & Software Engineering
mritha@ump.edu.my

BCN1043

http://ocw.ump.edu.my/

CAO – Chapter 3 – P1. Mritha Ramalingam

• Dr. Mohd Nizam Mohmad Kahar (mnizam@ump.edu.my)

• Jamaludin Sallim (jamal@ump.edu.my)

• Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)

• Dr. Mritha Ramalingam (mritha@ump.edu.my)

Faculty of Computer Systems & Software Engineering

authors

CAO – Chapter 3 – P1. Mritha Ramalingam

OUTCOME

• Able to perform operation on Boolean algebra, design simple
circuit using gates

• Understand the relationship of Digital logic with computer
operation for example in gates vs memory

CAO – Chapter 3 – P1. Mritha Ramalingam

CONTENT

• Logic Gates

• Boolean Algebra

• Combinational Circuits

– Flip-Flops

• Sequential Circuits

– Memory Components

CAO – Chapter 3 – P1. Mritha Ramalingam

DIGITAL COMPUTERS

• Digital computer deals with information that is denoted by binary digits

• Think! Answer!

• Why is it BINARY ? Why not Decimal or other number system?

CAO – Chapter 3 – P1. Mritha Ramalingam

LOGIC Circuit

Basic Logic Circuits

• Combinational Logic circuit: output value depends only on the input values (e.g. OR, AND, etc)

• Sequential Logic Circuit: output value depends on the input values and the current state

• Gate Functions are described by:

– Truth Table

– Boolean Function

– Karnaugh Map

Gate.
.
.

Binary
Digital
Input
Signal

Binary
Digital
Output
Signal

CAO – Chapter 3 – P1. Mritha Ramalingam

LOGIC GATES & BOOLEAN ALGEBRA

CAO – Chapter 3 – P1. Mritha Ramalingam

Truth Tables

xy = x x + y = x x bar = NOT x

AND is true only if OR is true if either NOT inverts the bit

both inputs are true inputs are true We will denote x bar as ~x

NOR is NOT of OR NAND is NOT of AND XOR is true if both inputs differ

CAO – Chapter 3 – P1. Mritha Ramalingam

Boolean Expressions

• Possible to derive Boolean expressions from Boolean operations

• Consider the expression:

 F = X + ~Y*Z

• What is it’s truth table?

Take note: Notice that it is easier to derive the truth table for the entire expression

by breaking it into subexpressions

So first we determine ~Y

next, ~Y * Z

finally, X + ~Y*Z

CAO – Chapter 3 – P1. Mritha Ramalingam

Truth Table ???

• Is to understand a logic circuit with different
permutations of inputs, with logic 1- true and logic 0-
false.

• The desired output can be achieved by a combination of
logic gates.

• truth table of two inputs is shown

CAO – Chapter 3 – P1. Mritha Ramalingam

Truth Table ???

CAO – Chapter 3 – P1. Mritha Ramalingam

Basic Boolean Identities
• As with algebra, there will be Boolean operations that we want to simplify

– We apply the following Boolean identities to help
• For instance, in algebra, x = y * (z + 0) + (z * 0) can be simplified to just x = y * z

CAO – Chapter 3 – P1. Mritha Ramalingam

Basic Boolean Identities

DeMorgan’s Law states that ~(X*Y) = ~X+~Y

Boolean expressions are proved if the values in truth tables give

the same values for left and right side of the equations

Here we have an example specifically to see how

DeMorgan’s Law works

CAO – Chapter 3 – P1. Mritha Ramalingam

Example 1: use algebraic simplification rules to reduce

~abc+~ab~c+ac

= ~abc + ~ab~c + ac

= ~ab(c+~c)+ac (distributive law)

= ~ab(1)+ac (inverse law)

= ~ab+ac (identity law)

Example 2: ab+~ac+bc = ab+~ac+bc*1 (identity)

= ab+~ac+bc*(a+~a) (inverse)

= ab +~ac+abc+~abc (distributive)

= ab(1+z)+~ac (b+1) (distributive)

= ab(1)+~ac(1) (null)

= ab *1+~ ac *1 (absorption)

= ab +~ac (identity)

CAO – Chapter 3 – P1. Mritha Ramalingam

Example 3: (a+b)(~a+b)

= ~a(a+b)+b(a+b) (distributive)

= ~aa+~ab+ab+bb

(distributive)

= 0+~ab+ab+bb (inverse)

= ~ab+ab+bb (identity)

= b(~a+a+b) (distributive)

= b(1+b) (inverse)

= b(1) (identity)

= b (idempotent)

CAO – Chapter 3 – P1. Mritha Ramalingam

LOGIC GATES

LOGIC GATES

CAO – Chapter 3 – P1. Mritha Ramalingam

Logic Gates

Here we see the logic gates that

represent the Boolean operations

previously discussed

We typically represent NOR and NAND by the two on the left,

but the two on the right are also correct

XOR looks like OR but with the

added curved line

CAO – Chapter 3 – P1. Mritha Ramalingam

Some example Circuits

Here is the truth table for this circuit

AND and OR gates can have more than 2

inputs, as seen here

Notice for ~Y, we can either use a NOT gate or

simply specify that the value is ~Y

What does this circuit

compute? (what is F?)

CAO – Chapter 3 – P1. Mritha Ramalingam

Using only NAND

• NAND (and NOR) have unique properties different from the other boolean
operations
– This allows us to use one or more NAND gates (or one or more NOR gates) and create gates

that can compute AND, OR and NOT
• See the examples below

CAO – Chapter 3 – P1. Mritha Ramalingam

NAND Chip

Early integrated circuits were several gates on a
single chip, you would connect this chip to other
chips by adding wires
between the pins

To do ~(A*B) + ~(C*D)

You would connect A and B to pins 7 and 6, C and
D to 4 and 3, and send 5 and 2 to an NAND chip

This is a NAND chip

Prove? why did we use
NAND

CAO – Chapter 3 – P1. Mritha Ramalingam

LOGIC CIRCUIT DESIGN

x y z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

F = x + ~yz

Boolean Algebra

x

y

z

F

Truth
Table

Boolean
Function

Logic
Diagram

CAO – Chapter 3 – P1. Mritha Ramalingam

Will continue…

