

BCN1043

COMPUTER ARCHITECTURE & ORGANIZATION

By Dr. Mritha Ramalingam

Faculty of Computer Systems & Software Engineering mritha@ump.edu.my

http://ocw.ump.edu.my/

AUTHORS

- Dr. Mohd Nizam Mohmad Kahar (mnizam@ump.edu.my)
- Jamaludin Sallim (jamal@ump.edu.my)
- Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)
- **Dr. Mritha Ramalingam** (mritha@ump.edu.my)

Faculty of Computer Systems & Software Engineering

OUTCOME

- Able to perform operation on Boolean algebra, design simple circuit using gates
- Understand the relationship of Digital logic with computer operation for example in gates vs memory

CONTENT

- Logic Gates
- Boolean Algebra
- Combinational Circuits
 - Flip-Flops
- Sequential Circuits
 - Memory Components

DIGITAL COMPUTERS

- Digital computer deals with information that is denoted by binary digits
- Think! Answer!
- Why is it *BINARY*? Why not Decimal or other number system?

Basic Logic Circuits

- Combinational Logic circuit: output value depends only on the input values (e.g. OR, AND, etc)
- Sequential Logic Circuit: output value depends on the input values and the current state
- Gate Functions are described by:
 - Truth Table
 - Boolean Function
 - Karnaugh Map

LOGIC GATES & BOOLEAN ALGEBRA

Truth Tables

Inp	uts	Outputs	
X	У	xy	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Inp	uts	Outputs	
X	У	x + y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Inputs	Outputs	
X	x	
0	1	
1	0	

xy = xAND is true only if **both** inputs are true x + y = xOR is true if **either** inputs are true x bar = NOT x NOT inverts the bit We will denote x bar as ~x

NOR is NOT of OR

x	y x NOR y	
0	0	1
0	1	0
1	0	0
1	1	0

NAND is NOT of AND

X	y	x NAND y
0	0	1
0	1	1
1	0	1
1	1	0

XOR is true if both inputs **differ**

x	у	x XOR y
0	0	0
0	1	1
1	0	1
1	1	0

Boolean Expressions

- Possible to derive Boolean expressions from Boolean operations
- Consider the expression:
 F = X + ~Y*Z
- What is it's truth table?

Take note: Notice that it is easier to derive the truth table for the entire expression by breaking it into subexpressions So first we determine $\sim Y$ next, $\sim Y * Z$ finally, $X + \sim Y * Z$

Inputs				Outputs	
x	У	Ζ	\overline{y}	ӯz	$x + \overline{y}z = F$
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

cc 🛈 🛇 🧿 CAO – Chapter 3 – P1. Mritha Ramalingam

Truth Table ???

- Is to understand a logic circuit with different permutations of inputs, with logic 1- true and logic 0-false.
- The desired output can be achieved by a combination of logic gates.
- truth table of two inputs is shown

2-input AND gate

Α	В	Output		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

Truth Table ???

2-input AND gate

Α	В	Output		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

Basic Boolean Identities

- As with algebra, there will be Boolean operations that we want to simplify
 - We apply the following Boolean identities to help
 - For instance, in algebra, x = y * (z + 0) + (z * 0) can be simplified to just x = y * z

Identity Name	AND Form	OR Form	
Identity Law	1x = x	0+x=x	
Null (or Dominance) Law	0x = 0	1+ <i>x</i> = 1	
Idempotent Law	XX = X	X + X = X	
Inverse Law	$x\overline{x} = 0$	$x + \overline{x} = 1$	
Commutative Law	xy = yx	x + y = y + x	
Associative Law	(xy)z = x(yz)	(x+y)+z = x+(y+z)	
Distributive Law	x+yz = (x+y)(x+z)	x(y+z) = xy+xz	
Absorption Law	x(x+y) = x	x+xy=x	
DeMorgan's Law	$(\overline{xy}) = \overline{x} + \overline{y}$	$(\overline{x+y}) = \overline{x}\overline{y}$	
Double Complement Law	$\overline{\overline{X}} = X$		
Law of Common Identities	$A \cdot (\overline{A} + B) = AB$		
	$A + (\overline{A}B)$	= A + B	

Basic Boolean Identities

Here we have an example specifically to see how DeMorgan's Law works

X	у	(<i>xy</i>)	(xy)	x	Ţ	\overline{x} + \overline{y}
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

DeMorgan's Law states that $\sim(X^*Y) = \sim X + \sim Y$

Boolean expressions are proved if the values in truth tables give the same values for left and right side of the equations

Example 1: use algebraic simplification rules to reduce ~*abc*+~*ab*~*c*+*ac*

> = -abc + -ab-c + ac= -ab(c+-c)+ac (distributive law) = -ab(1)+ac (inverse law) = -ab+ac (identity law)

Example 2: $ab+\sim ac+bc = ab+\sim ac+bc*1$ (identity) $= ab+\sim ac+bc*(a+\sim a)$ (inverse) $= ab +\sim ac+abc+\sim abc$ (distributive) $= ab(1+z)+\sim ac$ (b+1) (distributive) $= ab(1)+\sim ac(1)$ (null) $= ab*1+\sim ac*1$ (absorption) $= ab+\sim ac$ (identity)

Example 3: $(a+b)(\sim a+b)$ $= \sim a(a+b)+b(a+b)$ (distributive) $= \sim aa+\sim ab+ab+bb$ (distributive) $= 0+\sim ab+ab+bb$ (inverse) $= \sim ab+ab+bb$ (identity) $= b(\sim a+a+b)$ (distributive) = b(1+b) (inverse) = b(1) (identity) = b (idempotent)

LOGIC GATES

Gate	Description	Truth table		
ANDGate	The AND gate is a logic gate that gives an output of '1' only when all of its inputs are '1'. Thus, its output is '0' whenever at least one of its inputs is '0'	A	в	Output Q
		0	0	0
		0	1	0
		1	0	0
	Mathematically, $O = A \cdot B$		1	1
OR Gate	The OR gate is a logic gate that gives an output of '0' only when all of its inputs are '0'. Thus, its output is '1' whenever at least one of its inputs is '1'. $O = A + B$	A	B	Output Q
		0	0	0
		0	1	1
		1	0	1
100	at least one of its inputs is $1 \cdot Q = A + D$.			1.
NOT Gate	The NOT gate is a logic gate that gives an output that is opposite the state of its	A	Ou	tput O
		0		1
	input Mathematically $O = \overline{A}$		-	
	mpor Mautematically, Q – A.		-	
	The NAND gate is an AND gate with a NOT gate at its end. Thus, for the same combination of inputs, the output of a	A	В	Output Q
		0	0	1
NAND Gate		0	1	1
50 V 2010- AUGUSTO STUDIO		1	0	1
	NAIND gate will be opposite that of all			
	TATIAD gate will be opposite diat of an	1	1	0
	AND gate Mathematically, $Q = \overline{A \cdot B}$.	1	i	0
	AND gate Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate	1 A	1 B	0 Output Q
	AND gate. Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate at its end. Thus, for the same combination of	1 A 0	1 B 0	0 Output Q
NOR Gate	AND gate Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate at its end. Thus, for the same combination of	1 A 0 0	1 B 0 1	0 Output C 1 0
NOR Gate	AND gate Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate at its end. Thus, for the same combination of inputs, output of a NOR gate will be opposite	1 A 0 0 1	1 B 0 1 0	Output C
NOR Gate	AND gate Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate at its end. Thus, for the same combination of inputs, output of a NOR gate will be opposite that of an OR gate Mathematically $O = \overline{A + B}$	1 0 0 1 1	1 B 0 1 0	Output Q 1 0 0
NOR Gate	AND gate Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate at its end. Thus, for the same combination of inputs, output of a NOR gate will be opposite that of an OR gate.Mathematically, $Q = \overline{A + B}$.	1 0 0 1 1	1 B 0 1 0	Output Q 1 0 0
NOR Gate	AND gate Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate at its end. Thus, for the same combination of inputs, output of a NOR gate will be opposite that of an OR gate. Mathematically, $Q = \overline{A + B}$. The EXOR gate (for 'Exclusive OR' gate) is a	1 0 0 1 1	1 B 0 1 0 1 B	Output C 1 0 0 0 0 0
NOR Gate	AND gate Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate at its end. Thus, for the same combination of inputs, output of a NOR gate will be opposite that of an OR gate. Mathematically, $Q = \overline{A + B}$. The EXOR gate (for 'Exclusive OR' gate) is a	1 0 0 1 1 4 0	1 B 0 1 0 1 B 0	Output Q 1 0 0 0 0 Output Q
NOR Gate EXOR Gate	AND gate Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate at its end. Thus, for the same combination of inputs, output of a NOR gate will be opposite that of an OR gate. Mathematically, $Q = \overline{A + B}$. The EXOR gate (for 'Exclusive OR' gate) is a logic gate that gives an output of '1' when	1 0 0 1 1 1 0 0	1 B 0 1 0 1 B 0 1	Output C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NOR Gate EXOR Gate	AND gate Mathematically, $Q = \overline{A \cdot B}$. The NOR gate is an OR gate with a NOT gate at its end. Thus, for the same combination of inputs, output of a NOR gate will be opposite that of an OR gate. Mathematically, $Q = \overline{A + B}$. The EXOR gate (for 'Exclusive OR' gate) is a logic gate that gives an output of '1' when only inputs is '1'.	1 A 0 1 1 A 0 0 1 1	1 B 0 1 0 1 B 0 1 1 0	Output C 1 0 0 0 0 0 0 0 0 0 0 1 1

Communitising Technology

Here we see the logic gates that represent the Boolean operations previously discussed

X

X

XOR looks like OR but with the added curved line

Universiti Malaysia PAHANG

Some example Circuits

X

7

X

Z

AND and OR gates can have more than 2 inputs, as seen here

Notice for ~Y, we can either use a NOT gate or

 $x + \overline{y}z$

ӯz

Here is the truth table for this circuit

Inputs					Outputs
x	У	Ζ	\overline{y}	ӯz	$x + \overline{y}z = F$
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

What does this circuit compute? (what is F?)

Using only NAND

- NAND (and NOR) have unique properties different from the other boolean operations
 - This allows us to use one or more NAND gates (or one or more NOR gates) and create gates that can compute AND, OR and NOT
 - See the examples below

NAND Chip

Early integrated circuits were several gates on a single chip, you would connect this chip to other chips by adding wires between the pins

To do ~(A*B) + ~(C*D)

You would connect A and B to pins 7 and 6, C and D to 4 and 3, and send 5 and 2 to an NAND chip

Prove? why did we use NAND

Boolean Algebra

LOGIC CIRCUIT DESIGN

Will continue...

