BCN 1043

COMPUTER ARCHITECTURE \& ORGANIZATION

By
Dr. Mritha Ramalingam
Faculty of Computer Systems \& Software Engineering

mritha@ump.edu.my
http://ocw.ump.edu.my/
(c) (1) ©(O)CAO - Chapter 2-P2 . Mritha Ramalingam

AUTHORS

- Dr. Mohd Nizam Mohmad Kahar (mnizam@ump.edu.my)
- Jamaludin Sallim (jamal@ump.edu.my)
- Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)
- Dr. Mritha Ramalingam (mritha@ump.edu.my)

Faculty of Computer Systems \& Software Engineering

BCN 1043

COMPUTER ARCHITECTURE \& ORGANIZATION

Chapter 2 continues...

Number Conversion

Converting from Decimal to Binary

```
Remainder Method
Example: Convert 26d
to base 2
26/2 = 13 0
13/2=61
    6/2 = 3 0
    3/2 = 1 1
    1/2 = 0 1
    => 26d = 11010b
Remainder Method
Example: Convert 26d
to base 2
\(26 / 2=130\)
\(13 / 2=61\)
\(6 / 2=30\)
\(3 / 2=11\)
\(1 / 2=01\)
\(=>26 d=11010 b\)
```

How about floating point number?
E.g.: Convert 0.875d into
base 2 number

$$
0.875 \times 2=1.75
$$

$$
0.75 \times 2=1.51
$$

$$
0.5 \times 2=1.01
$$

$$
0 \quad \text { x } 2=0 \quad 0=>\quad 0.875 d=\mathbf{0 . 1 1 1 0 b}
$$

Number Conversion

Converting from Binary to Decimal

$$
\begin{aligned}
& \text { 101001b to decimal }\left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{9}\right) \\
& 101001 b==32+0+8+0+0+1=41 \mathrm{~d}
\end{aligned}
$$

Number Conversion

Converting from Decimal to Hexadecimal

Remainder Method
Example: Convert 425d to base 16

$$
\begin{aligned}
& 425 / 16=269->9 \\
& 26 / 16=110->A \\
& 1 / 16=0 \quad 1 \rightarrow 1 \quad=>425 d=1 \mathrm{~A} 9 \mathrm{~h}
\end{aligned}
$$

Exercise

1. 345
2.

89
3. 622

Number Conversion

Converting from Hexadecimal to Decimal

$$
\begin{aligned}
& \text { A3 } \mathrm{F}_{16} \text { to decimal } \\
& \mathrm{A} 3 \mathrm{~F}_{16}=\left(\mathrm{A} \times 16^{2}\right)+\left(3 \times 16^{1}\right)+\left(\mathrm{F} \times 16^{0}\right) \\
& =(10 \times 256)+(3 \times 16)+(15 \times 1) \\
& =2623_{10}
\end{aligned}
$$

Exercise

1. 345
2. 2 B67
3. EAD

Number Conversion

Converting from Hexadecimal to Binary

To convert a hex number to binary, we need only express each hex digit in binary
E.g.: Convert DE1 ${ }_{16}$ to binary

$$
\begin{array}{rccc}
& D & E & 1 \\
= & 1101 & 1110 & 0001 \\
= & 110111100001 \mathrm{~b}
\end{array}
$$

Exercise:

1. 5 DAB
2. 63ACE

Number Conversion

Converting from Binary to Hexadecimal

To convert from binary to hex, just reverse this process E.g.
$10010001_{2}=10010001=91_{16}$
$\begin{array}{ll}\text { Exercise } \\ \text { 1. } & 110011001 \\ \text { 2. } & 111011100 \\ \text { 3. } & 101010000001100\end{array}$

Number Conversion

Converting from Hexadecimal - Binary - Octal

Number Conversion

Octal to Decimal

$$
\begin{array}{rlr}
724_{8} \Rightarrow \quad 4 \times 8^{0}= & 4 \\
2 \times 8^{1}= & 16 \\
7 \times 8^{2}= & \frac{448}{468_{10}}
\end{array}
$$

Hexadecimal to Decimal Binary to Decimal

Number Conversion

Number Conversion

Decimal to octal

Decimal to hexadecimal
$1234_{10}=?_{16}$

Decimal to Binary
$125_{10}=?_{2}$

Number Conversion

Chapter 2

Machine Level Representation of data

- Bits, bytes, and words
- Numeric data representation and number bases
- Fixed- and floating-point systems
- Signed and twos-complement representations

Fixed and floating point systems

Number system

Integers
Represents whole numbers

Fractional numbers
Represents numbers with fractions

Fractional numbers
Fixed point Floating point

Fixed point systems

Fixed point

- numbers with fractions
- with fixed points
- E.g.1001.1010 $=2^{4}+2^{0}+2^{-1}+2^{-3}$
$=9.625$

Floating point systems

fractional numbers with floating (movable) points

(a) Format

- This number is stored in a binary word with three fields:
- Sign: plus or minus
- Significand S (Mantissa)
- Exponent E

A calculator might display 159 E 14

Chapter 2

Machine Level Representation of data

- Bits, bytes, and words
- Numeric data representation and number bases
- Fixed- and floating-point systems
- Signed and twos-complement representations

Signed magnitude Representation

- Left most bit is sign bit representing sign of the number
- 0 means positive
- 1 means negative
- Rest of the bits represent magnitude of the number

Sign	\longrightarrow Positive Number	
	Magnitude	Decimal value
	0111	+7
	0110	+6
	0101	+5
	0100	+4
	0011	+3
	0010	+2
	0001	+1
	0000	+0

$1 \longrightarrow$ Negative Number	
Sign-magnitude	Decimal value
1111	-7
1110	-6
1101	-5
1100	-4
1011	-3
1010	-2
1001	-1
1000	-0

Signed magnitude Representation

- Examples

$$
\begin{aligned}
& +18=00010010 \\
& -18=10010010
\end{aligned}
$$

$$
\begin{aligned}
& 01001001110100010000000000000000=1.638125 \times 2^{20} \\
& 1100100111010001000000000000000=-1.638125 \times 2^{20} \\
& 00110101110100010000000000000000=1.638125 \times 2^{-20} \\
& 10110101110100010000000000000000=-1.638125 \times 2^{-20}
\end{aligned}
$$

1's Complement

- Positive integers are similar to sign-magnitude notation.
- Negative integer is denoted as 1's complement of the positive number in signmagnitude notation. Ones complement of any number is obtained by complementing each one of the bits,
- i.e., 1 - replaced by 0 , and 0 - replaced by 1 .
$-1810=00010010$
$-\quad-1810=1$'s complement $=11101101$

\bar{N}	Decimal value
$n=4$	0111
0110	+7
$(2 n-1)=1111$	0101
0100	+6
0011	+4
0010	+3
0001	+2
0000	+1

\bar{N}	Decimal value
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

Convert to 1's complement (Q\&A)

- Find the 1's complement of:
- 11111111_{2}
- 11111_{2}
-00000000 2
- 00000_{2}
- 10001010_{2}
- 11010111_{2}
-11110011 2

Convert to 1's complement (Q\&A)

Answer

- $11111111_{2}: 1$'s complement $=00000000_{2}$
- 11111 $:$: 1 's complement $=00000_{2}$
- $00000000_{2}: 1$'s complement $=11111111_{2}$
- $00000_{2}: 1$'s complement $=11111_{2}$
- 10001010 ${ }_{2}$: 1 's complement $=01110101_{2}$
- 110101112: 1's complement $=00101000_{2}$
- $11110011_{2}: 1$'s complement $=00001100_{2}$

Ones Complement Addition

ex. 1.	ex. 2.
+1 0001	+3 0011
-6 1001	-3 1100
-5 1010	-0 1111

One's Complement Addition

- An example of one's complement integer addition with an end-around carry:

Ones Complement End Around Carry

$\begin{array}{ll}-2 & 1101 \\ -4 & 1011 \\ & -------\end{array}$

Twos compliment Representation

- All positive numbers begin with 0
- All negative numbers begin with 1

1. Perform the 1's complement operation.
2. add 1 to LSB.

Positive (+)		Negative (-)	
Binary Pattern	Decimal Value	Binary Pattern	Decimal Value
		10000	-8
01.111	7	$1{ }_{1} 0001$	-7
0 0 11100	6	$1{ }^{1}$	-6
$00^{1} 101$	5	$1 \left\lvert\, \begin{array}{llllll}0 & 1 & 1\end{array}\right.$	-5
$00_{1}^{1} 000$	4	$1{ }_{1}^{1} 000$	-4
0 01011	3	11101	-3
00010	2	$1{ }_{1} 110$	-2
000001	1	$1{ }^{1} 11$	-1
do 00	0		

Twos compliment Representation

Advantages

- One representation of zero
- Negating is fairly easy
$-3=00000011$
-Boolean complement gives 11111100
—Add 1 to LSB 11111101

Twos compliment Representation

Examples

- $+3=00000011$
- $+2=00000010$
- $+1=00000001$
- +0 = 00000000
- $-1=11111111$
- $-2=11111110$
- $-3=11111101$

Question

	1s compliment	2s complement?
59	00111011	00111011
102	01100110	01000001
65		10111111
-65	10111110	10000011
-125	10000010	
125	01111101	
84		
-83		
83		
91		

Chapter 2 Review
 Machine Level Representation of data

- Bits, bytes, and words
- Numeric data representation and number bases
- Fixed- and floating-point systems
- Signed and twos-complement representations

Chapter 2 Ends!

