

BCN1043

COMPUTER ARCHITECTURE & ORGANIZATION

By Dr. Mrith<u>a Ramalingam</u>

Faculty of Computer Systems & Software Engineering

mritha@ump.edu.my

http://ocw.ump.edu.my/

AUTHORS

- **Dr. Mohd Nizam Mohmad Kahar** (mnizam@ump.edu.my)
- Jamaludin Sallim (jamal@ump.edu.my)
- Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)
- **Dr. Mritha Ramalingam** (mritha@ump.edu.my)

Faculty of Computer Systems & Software Engineering

BCN1043

COMPUTER ARCHITECTURE & ORGANIZATION

Chapter 2 continues...

Converting from Decimal to Binary

Remainder Method Example: Convert 26d to base 2

 $26/2 = 13 \quad 0$ $13/2 = 6 \quad 1$ $6/2 = 3 \quad 0$ $3/2 = 1 \quad 1$ $1/2 = 0 \quad 1$

=> 26d = 11010b

How about floating point number? E.g.: Convert 0.875d into base 2 number

Converting from Binary to Decimal

101001b to decimal $(1 \ge 2^5) + (0 \ge 2^4) + (1 \ge 2^3) + (0 \ge 2^2) + (0 \ge 2^1) + (1 \ge 2^0)$ 101001b = = 32 + 0 + 8 + 0 + 0 + 1 = 41d

Converting from Decimal to Hexadecimal

Remainder Method Example: Convert 425d to base 16 425 / 16 = 26 9 -> 9 26 / 16 = 1 10 -> A 1 / 16 = 0 1 -> 1 => 425d = 1A9h

Exercise 1. 345 2. 89 3. 622

Converting from Hexadecimal to Decimal

 $\begin{array}{l} \text{A3F}_{16} \text{ to decimal} \\ \text{A3F}_{16} &= (\text{A x } 16^2) + (3 \text{ x } 16^1) + (\text{F x } 16^0) \\ &= (10 \text{ x } 256) + (3 \text{ x } 16) + (15 \text{ x } 1) \\ &= 2623_{10} \end{array}$

Exercise

1. 345 2. 2B67 3. EAD

Converting from Hexadecimal to Binary

To convert a hex number to binary, we need only express each hex digit in binary

E.g.: Convert $DE1_{16}$ to binary

- D E 1
- = 1101 1110 0001
- = 110111100001b

Exercise:

- 1. 5DAB
- 2. 63ACE

Converting from Binary to Hexadecimal

To convert from binary to hex, just reverse this process E.g. $10010001_2 = 1001\ 0001 = 91_{16}$

Exercise

- 110011001
- 1. 2. 3. 111011100
- 101010000001100

Converting from Hexadecimal - Binary - Octal

 $1FOC_{16} = 17414_8$

Octal to Decimal

Hexadecimal to Decimal

Binary to Decimal

Bit "0"

			v
		$ABC_{16} = C \times 16^{\circ} = 12 \times 1 = 12$ 101	$011_2 \implies 1 \ge 2^0 = 1$
724 ₈ =>	$4 \times 8^{0} = 4$	$B \times 16^1 = 11 \times 16 = 176$	$1 \times 2^1 = 2$
1.7.0	$2 \times 8^1 = 16$	$A \times 16^2 = 10 \times 256 = 2560$	$0 \times 2^2 = 0$
		A A 10 - 10 A 250 - 2500	$1 \times 2^3 = 8$
	$7 \times 8^2 = 448$		
	$7 \times 0 = 440$	274810	$0 \times 2^4 = 0$
	100	2,1010	1 05 20
	46810		$1 \times 2^5 = 32$

CAO – Chapter 2 – P2 . Mritha Ramalingam

4310

Decimal to octal

Decimal to hexadecimal

Decimal to Binary

Chapter 2

Machine Level Representation of data

- Bits, bytes, and words
- Numeric data representation and number bases
- Fixed- and floating-point systems
- Signed and twos-complement representations

Fixed and floating point systems

Number system

Integers Represents whole numbers Fractional numbers Represents numbers with fractions

Fractional numbers Fixed point Floating point

Fixed point systems

Fixed point

- numbers with fractions
- with fixed points
- E.g.1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3}

=9.625

Floating point systems

fractional numbers with floating (movable) points

- This number is stored in a binary word with three fields:
- Sign: plus or minus
- Significand S (Mantissa)
- Exponent E

Chapter 2

Machine Level Representation of data

- Bits, bytes, and words
- Numeric data representation and number bases
- Fixed- and floating-point systems
- Signed and twos-complement representations

Signed magnitude Representation

- Left most bit is sign bit representing sign of the number
- 0 means positive
- 1 means negative
- Rest of the bits represent magnitude of the number

	$0 \longrightarrow Positive Number$		
	Magnitude	Decimal value	
Sign 🔶	0111	+7	
	0110	+6	
	0 101	+5	
	0 100	+4	
	0 011	+3	
	0 010	+2	
	0 001	+1	
	0 000	+0	

$1 \longrightarrow$ Negative Number			
Sign-magnitude	Decimal value		
1111	-7		
1 110	-6		
1101	-5		
1100	-4		
1 011	-3		
1 010	-2		
1001	-1		
1000	-0		

Signed magnitude Representation

• Examples

+18 = 00010010-18 = 10010010

		101000100000000000000000				
1	10010011	101000100000000000000000	=	-1.638125	Х	2^{20}
		101000100000000000000000				
1	01101011	101000100000000000000000	=	-1.638125	Х	2^{-20}

1's Complement

- Positive integers are similar to sign-magnitude notation.
- Negative integer is denoted as 1's complement of the positive number in signmagnitude notation. Ones complement of any number is obtained by complementing each one of the bits,
- i.e., 1 replaced by 0, and 0 replaced by 1.
 - $18_{10} = 00010010$

-1610 - 18CC	\overline{N}	Decimal value	\overline{N}	Decimal value
	0111	+7	1000	-7
	0110	+6	1001	-6
n = 4	0101	+5	1010	-5
(2n-1) = 1111	0100	+4	1011	-4
	0011	+3	1100	-3
	0010	+2	1101	-2
	0001	+1	1110	-1
	0000	+0	1111	-0

 $-18_{10} = 1$'s complement = 11101101

Convert to 1's complement (Q&A)

- Find the 1's complement of:
 - •111111112
 - •11111₂
 - •000000002
 - •000002
 - •10001010₂
 - •11010111₂
 - •111100112

Convert to 1's complement (Q&A)

Answer

- 11111111_2 : 1's complement = 0000000_2
- 11111_2 : 1's complement = 00000_2
- 0000000_2 : 1's complement = 11111111_2
- 00000_2 : 1's complement = 11111_2
- 10001010_2 : 1's complement = 01110101_2
- 11010111_2 : 1's complement = 00101000_2
- 11110011₂: 1's complement = 00001100₂

Ones Complement Addition

ex. 1.		ex. 2.	
+1	0001	+3	0011
-6	1001	-3	1100
-			
-5	1010	-0	1111

One's Complement Addition

• An example of one's complement integer addition with an end-around carry:

Ones Complement End Around Carry

Twos compliment Representation

- All positive numbers begin with 0
- All negative numbers begin with 1
- 1. Perform the 1's complement operation.
- 2. add 1 to LSB.

Positi	ve (+)	Negative (-)		
Binary Pattern	Decimal Value	Binary Pattern	Decimal Value	
		1000	-8	
0111	7	1001	-7	
0 1 1 0	6 💻	1010	-6	
0 1 0 1	5 💻	1011	-5	
0 1 0 0	4	1100	-4	
0011	3 -	>1101	-3	
0010	2 💻	🍉 1 1 1 0	-2	
0001	1	1111	-1	
0 0 0 0	0	-0		

Twos compliment Representation

Advantages

- One representation of zero
- Negating is fairly easy
 - -3 = 00000011
 - -Boolean complement gives
 - 11111100
 - —Add 1 to LSB 11111101

Twos compliment Representation

Examples

- +3 = 00000011
- +2 = 00000010
- +1 = 0000001
- +0 = 00000000
- -1 = 11111111
- -2 = 11111110
- -3 = 11111101

Question

	1s compliment	2s complement?
59	00111011	00111011
102	01100110	
65		01000001
-65	10111110	10111111
-125	1000010	10000011
125	01111101	
84		
-83		
83		
91		

Chapter 2 Review Machine Level Representation of data

- Bits, bytes, and words
- Numeric data representation and number bases
- Fixed- and floating-point systems
- Signed and twos-complement representations

Chapter 2 Ends!

