

BCN1043

COMPUTER ARCHITECTURE & ORGANIZATION

By Dr. Mrith<u>a Ramalingam</u>

Faculty of Computer Systems & Software Engineering

mritha@ump.edu.my

http://ocw.ump.edu.my/

AUTHORS

- **Dr. Mohd Nizam Mohmad Kahar** (mnizam@ump.edu.my)
- Jamaludin Sallim (jamal@ump.edu.my)
- Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)
- **Dr. Mritha Ramalingam** (mritha@ump.edu.my)

Faculty of Computer Systems & Software Engineering

Chapter 2 Machine Level Representation of data

- •Bits, bytes, and words
- •Numeric data representation and number bases
- •Fixed- and floating-point systems
- •Signed and twos-complement representations

- Able to perform operation on numbering system : binary, decimal and hexadecimal
- Able to perform operation on sign magnitude, 1's complement and 2's complement representation.

Machine Level Representation of data

•Bits, bytes, and words

Chapter 2

- •Numeric data representation and number bases
- •Fixed- and floating-point systems
- •Signed and twos-complement representations

Bits, Bytes and Words

Bits - A computer's world is a binary world and communication of instruction and data by the devices that process them is always in binary (bit 0 or bit 1)

Bytes

- A collection of 8 bits
- used represent a character such as a letter, number, or typographic symbol ("Q","4","&")
- ASCII Encoding

EXAMPLE:

- 1 **BIT** EXAMPLE: 0
- 1 BYTE = 8 BITS

Bits, Bytes and Words

Word

- 2 bytes form a word
- to represent the bigger number or characters.
- Unicode encoding

EXAMPLE: 00001111

1 word = 2 bytes = 16 bits

EXAMPLE: 11110000 00001111

Chapter 2

Machine Level Representation of data

- Bits, bytes, and words
- Numeric data representation and number bases
- Fixed- and floating-point systems
- Signed and twos-complement representations

Number data representation

Egyptian

Source: http://static.wixstatic.com

D = 500 M = 1000 V = 5X = 10 L = 50C = 100LXXXI XXI XXXI XLI LI LXI LXXI XCI CI XI 11 51 21 31 41 61 91 71 81 101 11 2 XII 12 XXII XXXII XLII LII LXII LXXII LXXXII XCII CCXII 22 32 42 52 62 92 72 82 212 Ш XIII XXIII XXXIII XLIII LIII LXIII LXXIII LXXXIII XCIII CCCLIII 3 13 23 33 43 53 63 73 83 93 353 IV XIV XXIV XXXIV XLIV LIV LXIV LXXIV LXXXIV XCIV CDIV 4 14 24 34 44 54 64 74 84 94 404 ٧ XV XXV XXXV XLV LV LXV LXXV LXXXV XCV DLV 5 15 25 35 45 55 65 75 85 95 555 VI XVI XXVI XXXVI XLVI LVI LXVI LXXVI LXXXVI XCVI DCCCXLVI 6 16 36 46 56 26 66 76 86 96 846 VII XXXVII XLVII LVII LXVII LXXVII XVII XXVII LXXXVII XCVII CMXXVII 7 17 27 37 47 57 67 77 87 97 927 VIII XVIII XXVIII XXXVIII XLVIII LVIII LXVIII LXXVIII LXXXVIII XCVIII MVIII 18 58 8 28 38 48 68 78 88 98 1008 IX XIX XXIX XXXIX XLIX LIX LXIX LXXIX LXXXIX XCIX MCMXCIX 19 9 29 39 49 59 69 89 99 1999 79 X 10 XX 20 XXX LX 60 LXX LXXX XC MMCDXX XL L С 30 40 50 70 80 90 100 2420

Source: https://nicholasacademy.com/

Roman

Communitising Technology

- Fundamental to understand how computers work is understanding the number system that computer use to store data and communicate with each other
- Number system has been used to understand computer

Number bases

- BASE 10 (DECIMAL)
 - E.G.: 3945₁₀ / 3945D
- BASE 2 (BINARY)
 - E.G.: 10101011₂ / 10101011B
- BASE 16 (HEXADECIMAL)
 - E.G.: 0АЗЕ₁₆ / 0АЗЕн
- BASE 8 (OCTAL)
 - E.G.: 17₈

Number Systems

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

ASCII

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	·
1	01	Start of heading	33	21	1	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	в	98	62	b
3	03	End of text	35	23	#	67	43	с	99	63	c
4	04	End of transmit	36	24	ş	68	44	D	100	64	a
5	05	Enquiry	37	25	÷	69	45	E	101	65	e
6	06	Acknowledge	38	26	ھ	70	46	F	102	66	f
7	07	Audible bell	39	27	·	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j (
11	OB	Vertical tab	43	2 B	+	75	4B	ĸ	107	6B	k
12	oc	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	м	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	o	80	50	Р	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	s	115	73	s
20	14	Device control 4	52	34	4	84	54	т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans. block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	x	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	ЗA	:	90	5A	z	122	7A	z
27	1B	Escape	59	ЗВ	;	91	5B	E	123	7B	{
28	1C	File separator	60	зC	<	92	5C	۱	124	7C	1
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	ЗE	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	ЗF	?	95	5F	_	127	7 F	

Source: http://docplayer.hu

Decimal system - Base or Radix 10

- Used everyday
- E.g. 4728
 - Four Thousands, Seven hundreds,
 - Two tens and 8
 - $4728 = (4 \times 1000) + (7 \times 100) + (2 \times 10) + 8$
 - Each digit is multiplied by 10 raised by the power of digit position
 - $4728 = (4 \times 10^3) + (7 \times 10^2) + (2 \times 10^1) + (8 \times 10^0)$

Decimal system - Base or Radix 10

Common powers of 10

Power	Preface	Symbol	Value
10-12	pico	р	.000000000001
10-9	nano	n	.000000001
10-6	micro	μ	.000001
10-3	milli	m	.001
10 ³	kilo	k	1000
10 ⁶	mega	Μ	1000000
10 ⁹	giga	G	100000000
10^{12}	tera	Т	1000000000000

- Only Two Digits
- 1 and 0
- Represent Base 2
- Each digit is multiplied by 2 raised by the power of digit position
- $100_2 = (1 \ge 2^2) + (0 \ge 2^1) + (0 \ge 2^0)$ = 4_{10} • $101011B = (1 \ge 2^5) + (0 \ge 2^4) + (1 \ge 2^3) + (0 \ge 2^2) + (1 \ge 2^1) + (1 \ge 2^0)$

$$= 43D$$

Common powers of 2

Power	Preface	Symbol	Value
2 ¹⁰	kilo	k	1024
2^{20}	mega	Μ	1048576
2 ³⁰	Giga	G	1073741824

Communitising Technology

- Binary is very difficult to human to read all the digits and to understand [with lot of digits]
- Human being are comfortable to decimal number system
- However... Conversion between binary and decimal occurs

Hexadecimal system - Base or Radix 16

- In most computers, binary data occupy some multiple of 4 bits, and hence some multiple of a single hexadecimal digit
- · Binary digits are grouped into sets of four
- Each possible combination of four binary digits is given a symbol -16 hexadecimal digits
- Each digit is multiplied by 16 raised by the power of digit position

Hexadecimal system - Base or Radix 16

Exan	nple	
	1-	

 $2C_{16} = (2 \times 16^{1}) + (C \times 16^{0})$ $= (2 \times 16^{1}) + (12 \times 16^{0})$ $= 44_{10}$

Binary	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	E
1111	F

Chapter 2 Machine Level Representation of data

Chapter 2 will continue!

