BCN 1043

COMPUTER ARCHITECTURE \& ORGANIZATION

By
Dr. Mritha Ramalingam
Faculty of Computer Systems \& Software Engineering

mritha@ump.edu.my
http://ocw.ump.edu.my/
(c) (1) ©(O)CAO - Chapter 2-P1. Mritha Ramalingam

AUTHORS

- Dr. Mohd Nizam Mohmad Kahar (mnizam@ump.edu.my)
- Jamaludin Sallim (jamal@ump.edu.my)
- Dr. Syafiq Fauzi Kamarulzaman (syafiq29@ump.edu.my)
- Dr. Mritha Ramalingam (mritha@ump.edu.my)

Faculty of Computer Systems \& Software Engineering

Chapter 2

Machine Level Representation of data

- Bits, bytes, and words
- Numeric data representation and number bases
- Fixed- and floating-point systems
- Signed and twos-complement representations

LEARNING OUTCOMES

- Able to perform operation on numbering system : binary, decimal and hexadecimal
- Able to perform operation on sign magnitude, 1's complement and 2's complement representation.

Chapter 2

Machine Level Representation of data

- Bits, bytes, and words

Numeric data representation and number bases
-Fixed- and floating-point systems Signed and twos-complement representations

Bits, Bytes and Words

Bits - A computer's world is a binary world and communication of instruction and data by the devices that process them is always in binary (bit 0 or bit 1)

Bytes

- A collection of 8 bits
- used represent a character such as a letter, number, or typographic symbol ("Q","4","\&")
- ASCII Encoding

Example:

1 BIT	EXAMPLE: 0
1 BYTE	$=8$ BITS

Bits, Bytes and Words

Word

- 2 bytes form a word
- to represent the bigger number or characters.
- Unicode encoding

EXAMPLE: 00001111
$1 \mathrm{WORD}=2$ BYTES $=16$ BITS
EXAMPLE: 1111000000001111

Chapter 2

Machine Level Representation of data

- Bits, bytes, and words
- Numeric data representation and number bases
- Fixed- and floating-point systems
- Signed anđ̄ twos-compiement representations

Numeric data representation and number bases

Number data representation

Source: http://static.wixstatic.com

	I=1		$V=5$	$\mathrm{X}=10$	$\mathrm{L}=50$		$C=100$	$\mathrm{D}=500$	$M=1000$	
1	$\begin{aligned} & \hline \mathrm{XI} \\ & 11 \end{aligned}$	$\begin{gathered} \mathrm{xXI} \\ 21 \end{gathered}$	$\begin{gathered} \mathrm{xxxI} \\ 31 \end{gathered}$	$\begin{gathered} \mathrm{XLI} \\ 41 \end{gathered}$	$\begin{aligned} & \mathrm{LI} \\ & 51 \end{aligned}$	$\begin{gathered} \hline \text { LXI } \\ 61 \end{gathered}$	$\begin{gathered} \mathrm{LXXI} \\ 71 \end{gathered}$	$\underset{81}{\mathrm{LXXXI}_{1}}$	$\begin{gathered} \hline \mathrm{XCI} \\ 91 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{Cl} \\ 101 \end{gathered}$
$\begin{aligned} & I I \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{XII} \\ & 12 \end{aligned}$	$\begin{gathered} \mathrm{xXIII} \\ 22 \end{gathered}$	$\begin{gathered} \text { XXXII } \\ 32 \end{gathered}$	$\begin{aligned} & \text { XLII } \\ & 42 \end{aligned}$	$\begin{aligned} & \text { LII } \\ & 52 \end{aligned}$	$\begin{gathered} \text { LXII } \\ 62 \end{gathered}$		$\begin{gathered} \text { LXXXII } \\ 82 \end{gathered}$	$\begin{gathered} \mathrm{XClII} \\ 92 \end{gathered}$	$\begin{gathered} \hline \text { CCXII } \\ 212 \end{gathered}$
$\begin{gathered} 1 I I I \\ 3 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { XIII } \\ 13 \end{array}$	$\begin{gathered} \mathrm{xxIII} \\ 23 \end{gathered}$	$\begin{gathered} \text { XXXIIII } \\ 33 \end{gathered}$	$\begin{gathered} \text { XLIIII } \\ 43 \end{gathered}$	$\begin{gathered} \hline \text { LIII } \\ 53 \end{gathered}$	$\underset{63}{\text { LXIII }^{\prime}}$	$\begin{gathered} \text { LXXIII } \\ 73 \end{gathered}$	$\begin{gathered} \text { LXXXIII } \\ 83 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{XCIIII} \\ 93 \end{gathered}$	$\begin{gathered} \text { CCCLIIII } \\ \hline 353 \end{gathered}$
$\begin{gathered} \text { IV } \\ 4 \end{gathered}$	$\begin{gathered} \text { XIV } \\ 14 \end{gathered}$	$\begin{gathered} \text { XXIV } \\ 24 \end{gathered}$	$\begin{gathered} \text { XXXIV } \\ \hline 4 \end{gathered}$	$\underset{44}{ }$	$\begin{gathered} \text { LIV } \\ 54 \end{gathered}$	$\underset{64}{\text { LXIV }}$	$\underset{74}{ }$	$\underset{84}{\mathrm{LXXXIV}}$	$\begin{gathered} \text { XCIV } \\ 94 \end{gathered}$	$\begin{gathered} \text { CDIV } \\ 404 \end{gathered}$
$\begin{aligned} & V \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{XV} \\ & 15 \end{aligned}$	$\begin{gathered} \mathrm{XXV} \\ 25 \end{gathered}$	$\begin{gathered} \mathrm{XxXV} \\ 35 \end{gathered}$	$\begin{gathered} \mathrm{XLV} \\ 45 \end{gathered}$	$\begin{gathered} \mathrm{LV} \\ 55 \end{gathered}$	$\begin{aligned} & \text { LXV } \\ & 65 \end{aligned}$	$\underset{75}{\text { LXXV }^{2}}$	$\begin{gathered} \text { LXXXV } \\ 85 \end{gathered}$	$\begin{gathered} \mathrm{XCV} \\ 95 \end{gathered}$	$\begin{aligned} & \text { DLV } \\ & 555 \end{aligned}$
$\begin{gathered} \mathrm{VI} \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{XVI} \\ 16 \end{gathered}$	$\begin{gathered} \text { XXVI } \\ 26 \end{gathered}$	$\begin{gathered} \text { XxxyI } \\ 36 \end{gathered}$	$\begin{gathered} \mathrm{XLVI} \\ 46 \end{gathered}$	$\begin{array}{\|c} \hline \text { LVI } \\ 56 \end{array}$	$\begin{array}{\|c} \hline \text { LXVI } \\ 66 \end{array}$	$\begin{gathered} \text { LXXVI } \\ 76 \end{gathered}$	$\underset{86}{\operatorname{LXXXVI}^{2}}$	$\begin{array}{\|c} \hline \text { XCVI } \\ 96 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { DCCCXLVI } \\ 846 \end{array}$
$\begin{gathered} \mathrm{VII} \\ 7 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XVII } \\ 17 \end{array}$	$\begin{array}{\|c} \hline \text { XXVIII } \\ 27 \\ \hline \end{array}$	$\begin{gathered} \text { XXXVIII } \\ 37 \end{gathered}$	$\begin{gathered} \text { XLVII } \\ 47 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { LVII } \\ 57 \end{array}$	$\begin{array}{\|c} \hline \text { LXVIII } \\ 67 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { LXXVIII } \\ 77 \end{array}$	$\begin{array}{\|c} \hline \text { LXXXVIII } \\ 87 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { XCVII } \\ 97 \\ \hline \end{array}$	$\begin{gathered} \hline \text { CMXXVIII } \\ 927 \end{gathered}$
$\begin{gathered} \text { VIIII } \\ 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XVIII } \\ 18 \end{array}$	$\begin{array}{\|c} \hline \text { XXVIII } \\ 28 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { XXXVIIII } \\ 38 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { XLVIII } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { LVIIII } \\ 58 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { LXVIIII } \\ 68 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { LXXVIII } \\ 78 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { LXXXVIII } \\ 88 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { XCVIII } \\ 98 \\ \hline \end{array}$	$\begin{aligned} & \text { MVIIII } \\ & 1008 \end{aligned}$
$\begin{gathered} 1 X \\ 9 \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{XIX} \\ 19 \end{array}$	$\begin{gathered} \mathrm{XXIX} \\ 29 \end{gathered}$	$\begin{gathered} \text { XxxIX } \\ 39 \end{gathered}$	$\underset{49}{\mathrm{XLIX}}$	$\begin{gathered} \mathrm{LIX} \\ 59 \end{gathered}$	$\underset{69}{\mathrm{LXIX}}$	$\underset{79}{\text { LXXIX }^{2}}$	$\underset{89}{\text { LXXXIX }^{2}}$	$\begin{array}{\|c} \hline \text { XCIX } \\ 99 \end{array}$	$\begin{array}{\|c\|} \hline \text { MCMXCIX } \\ 1999 \end{array}$
$\begin{gathered} \mathrm{X} \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{xx} \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{XxX} \\ 30 \end{gathered}$	$\begin{aligned} & \mathrm{XL} \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{LX} \\ & 60 \end{aligned}$	$\underset{70}{\mathrm{LXXX}^{2}}$	$\begin{gathered} \text { LXXX } \\ 80 \end{gathered}$	$\begin{aligned} & \mathrm{XC} \\ & 90 \\ & \hline \end{aligned}$	$\begin{gathered} c \\ 100 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MMCDXX } \\ 2420 \end{array}$

Source: https://nicholasacademy.com/

Numeric data representation and number bases

- Fundamental to understand how computers work is understanding the number system that computer use to store data and communicate with each other
- Number system has been used to understand computer

Numeric data representation and number bases

Number bases

- BASE 10 (DECIMAL)
- E.G.: 3945 ${ }_{10}$ / 3945D
- BASE 2 (BINARY)
- E.G.: $10101011_{2} / 10101011 \mathrm{~B}$
- BASE 16 (HEXADECIMAL)
- E.G.: OA3E ${ }_{16}$ / OA3EH
- Base 8 (Octal)
- E.G.: 178

Numeric data representation and number bases

Number Systems

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

ASCII

Dec	Hex	Char									
0	00	Null	32	20	Space	64	40	${ }^{1}$	96	60	-
1	01	Start of heading	33	21	$!$	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	B	98	62	b
3	03	End of text	35	23	\#	67	43	C	99	63	c
4	04	End of transmit	36	24	\$	68	44	D	100	64	d
5	05	Enquiry	37	25	\%	69	45	E	101	65	e
6	06	Acknowledge	38	26	ε	70	46	F	102	66	\pm
7	07	Audible bell	39	27	'	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	H	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2 A	*	74	4 A	J	106	6 A	j
11	OB	Vertical tab	43	2 B	+	75	4 B	K	107	6 B	k
12	OC	Form feed	44	2 C	,	76	4 C	L	108	6 C	1
13	OD	Carriage return	45	2D	-	77	4 D	M	109	6D	m
14	OE	Shift out	46	2 E	-	78	4 E	N	110	6 E	n
15	OF	Shift in	47	2 F	/	79	4 F	\bigcirc	111	6 F	\bigcirc
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	c
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	5	115	73	3
20	14	Device control 4	52	34	4	84	54	T	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans. block	55	37	7	87	57	w	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	y
26	1 A	Substitution	58	3 A	:	90	5 A	z	122	7 A	z
27	1B	Escape	59	3 B	;	91	5 B	[123	7 B	¢
28	1 C	File separator	60	3 C	$<$	92	5 C	,	124	7 C	1
29	1D	Group separator	61	3D	=	93	5D]	125	7 D	\}
30	1E	Record separator	62	3 E	>	94	5 E	\wedge	126	7 E	\sim
31	1 F	Unit separator	63	3 F	$?$	95	5 F		127	7 F	\square

Decimal system - Base or Radix 10

- Used everyday
- E.g. 4728
- Four Thousands, Seven hundreds,

Two tens and 8

- $4728=(4 \times 1000)+(7 \times 100)+(2 \times 10)+8$
- Each digit is multiplied by 10 raised by the power of digit position
- $4728=\left(4 \times 10^{\mathbf{3}}\right)+\left(7 \times \mathbf{1 0}^{\mathbf{2}}\right)+\left(2 \times 10^{1}\right)+\left(8 \times \mathbf{1 0}^{\mathbf{0}}\right)$

Decimal system - Base or Radix 10

Common powers of 10

Power	Preface	Symbol	Value
10^{-12}	pico	p	.000000000001
10^{-9}	nano	n	.000000001
10^{-6}	micro	μ	.000001
10^{-3}	milli	m	.001
10^{3}	kilo	k	1000
10^{6}	mega	M	1000000
10^{9}	giga	G	1000000000
10^{12}	tera	T	1000000000000

Binary system - Base or Radix 2

- Only Two Digits
- 1 and 0
- Represent Base 2
- Each digit is multiplied by 2 raised by the power of digit position
- $100_{2}=\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+$

$$
\begin{aligned}
& \left(0 \mathrm{x} 2^{0}\right) \\
= & 4_{10}
\end{aligned}
$$

- $101011 \mathrm{~B}=\left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+$

$$
\begin{aligned}
& \left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+ \\
& \left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)
\end{aligned}
$$

$$
=43 \mathrm{D}
$$

Binary system - Base or Radix 2

Common powers of 2

Power	Preface	Symbol	Value
2^{10}	kilo	k	1024
2^{20}	mega	M	1048576
2^{30}	Giga	G	1073741824

Binary system - Base or Radix 2

- Binary is very difficult to human to read all the digits and to understand [with lot of digits]
- Human being are comfortable to decimal number system
- However... Conversion between binary and decimal occurs

Binary system - Base or Radix 2

Hexadecimal system - Base or Radix 16

- In most computers, binary data occupy some multiple of 4 bits, and hence some multiple of a single hexadecimal digit
- Binary digits are grouped into sets of four
- Each possible combination of four binary digits is given a symbol 16 hexadecimal digits
- Each digit is multiplied by 16 raised by the power of digit position

Hexadecimal system - Base or Radix 16

Example

$$
\begin{aligned}
2 \mathrm{C}_{16} & =\left(2 \times 16^{1}\right)+\left(\mathrm{C} \times 16^{0}\right) \\
& =\left(2 \times 16^{1}\right)+\left(12 \times 16^{0}\right) \\
& =44_{10}
\end{aligned}
$$

Binary	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	B
1100	C
1101	D
1110	E
1111	F

Chapter 2
 Machine Level Representation of data

Chapter 2 will continue!

