

Artificial Intelligence

Artificial Neural Network

by Abdul Sahli Fakharudin Faculty Computer Systems & Software Engineering sahli@ump.edu.my

Communitising Technology

Chapter Description

- Expected Outcomes
 - Student able to review and discuss the artificial neural network concepts
 - Student able to analysis and apply artificial neural network to solve given problem.

Content

- Neural network architectures
- Activation function
- Neural network application development
 - Data collection
 - Data normalization
 - Design
 - Training
 - Testing

• Single layer networks – Only have one layer of weight eg:

- Multi layer network have 2 or more weight layer
- It consist of a input layer 1 or more middle layer and a output layer

Communitising Technology

Competitive layer networks – close loop networks eg:

Activation Function

- Output calculation is based on activation function which works as a "threshold" function.
- The input summation used activation function to produce the output value
- Example of activation function:
 - Step function
 - Sigmoid function
 - Linear Function
 - Gaussian Function

Single layer example

Input: (2, 10, 0, 3) – What is the output?

Multi layer example

A two weight layer, feedforward network
Two inputs, one output, one 'hidden' unit

Input: (3, 1)
$$f(x) = \frac{1}{1 + e^{-x}}$$

What is the output?

Neural Network Application Development

Methodology

- 1. Data collection
- 2. Data normalisation
- 3. Neural network design
- 4. Neural network training
- 5. Testing

Data collection

 Data collection – Collect the chosen data to be used as a training sample.

Sepal length	Sepal width	Petal length	Petal width	Iris Class
5.7	4.4	1.5	0.4	Iris-setosa
5.4	3.9	1.3	0.4	Iris-setosa
6.1	2.8	4.7	1.2	Iris- versicolor
6.4	2.9	4.3	1.3	Iris- versicolor
6.1	3	4.9	1.8	Iris-virginica
6.4	2.8	5.6	2.1	Iris-virginica

Data collection

Attributes	Minimum	Maximum
Sepal length	4.3	7.9
Sepal width	2	4.4
Petal length	1	6.9
Petal width	0.1	2.5

Sepal length	Sepal width	Petal length	Petal width	Iris Class
5.8	2.5	3.9	1.1	?

Data normalisation

- Data normalisation normalisation process applied to the selected data.
- Max- Min normalization formula
- Example: We want to normalize data to range of the interval [0,1].
- We put: new_max A= 1, new_minA =0.

$$v' = \frac{v - \min A}{\max A - \min A} (new \max A - new \min A) + new \min A$$

Neural network design

• 4 input attributes and 1 decision

• 4 input nodes and 1 output nodes

 Back-propagation training will be used to train the networks

Activation function

$$f(y) = \frac{1}{1 + e^{-y}}$$

- The backpropagation learning process using error from the output and propagate back to previous layer for weight changes.
- Output layer (Y) error is multiplication of error value with activation function derivation.

$$\delta_{w_{jk}}^{\mu} = f'(y_k^{\mu})(T_k^{\mu} - Y_k^{\mu}) = y_k^{\mu}(1 - y_k^{\mu})(T_k^{\mu} - Y_k^{\mu})$$

 Calculate the hidden layer error by multiply the derivative of the activation function with summation of multiplication for output layer error and hidden layer weight

$$\delta^{\mu}_{v_{jk}} = f'(z^{\mu}_{k}) \sum w_{jk} \delta^{\mu}_{w_{jk}} = z^{\mu}_{k} (1 - z^{\mu}_{k}) \sum w_{jk} \delta^{\mu}_{w_{jk}}$$

 The network weights are updated with following delta weight changes

$$w_{jk}^{new} = w_{jk}^{old} + \Delta w_{jk} \qquad v_{jk}^{new} = v_{jk}^{old} + \Delta v_{jk}$$

• Where,

$$\Delta w_{jk} = \alpha \delta^{\mu}_{w_{jk}} Z^{\mu}_{k} \qquad \Delta v_{jk} = \alpha \delta^{\mu}_{v_{jk}} X^{\mu}_{k}$$

Neural network testing

- Dataset separated into training and testing set
- Training set will be used during the training
- Testing set will be used as the unknown information and used to check the neural network prediction capability

Conclusion of The Chapter

- Conclusion #1
 - Artificial neural network have several architectures
- Conclusion #2
 - Activation function determine the output value
- Conclusion #3
 - Neural network development consist of 5 steps:- data collection, nomalisation, design, training and testing

Chapter Description

- References
 - Vonk, E., Jain, L.C. & Johnson, R.P. 1997. Automatic Generation of Neural Network Architecture Using Evolutionary Computation. Advances in Fuzzy Systems – Applications and Theory, Volume 14. World Scientific Publishing, Singapore.