
Artificial Intelligence

Problem solving by searching:
Uninformed Search

by
Abdul Sahli Fakharudin

Faculty Computer Systems & Software Engineering
sahli@ump.edu.my

Chapter Description

• Expected Outcomes
– Student able to review the breadth firsts search, death first

search, depth limited search, iterative deepening search and
uniform cost search

– Student able to analyse and apply the searches to solve a given
problem

• References
– ……..

Content #1

• What is artificial intelligence?

• History of artificial intelligence

• Example of artificial intelligence application

4

Breadth First Search (BFS)

Main idea: Expand all nodes at depth (i) before expanding nodes at depth (i + 1)
Level-order Traversal.

Implementation: Use of a First-In-First-Out queue (FIFO). Nodes visited first are
expanded first. Enqueue nodes in FIFO (first-in, first-out) order.

5

Breadth First Search

Given the following state space (tree search), give the sequence of
visited nodes when using BFS (assume that the nodeO is the goal
state):

A

B C ED

F G H I J

K L

O

M N

6

Breadth First Search

 A,

A

B C ED

7

Breadth First Search

 A,
 B,

A

B C ED

F G

8

Breadth First Search

 A,
 B,C

A

B C ED

F G H

9

Breadth First Search

 A,
 B,C,D

A

B C ED

F G H I J

10

Breadth First Search

 A,
 B,C,D,E

A

B C ED

F G H I J

11

Breadth First Search

 A,
 B,C,D,E,
 F,

A

B C ED

F G H I J

12

Breadth First Search

 A,
 B,C,D,E,
 F,G

A

B C ED

F G H I J

K L

13

Breadth First Search

 A,
 B,C,D,E,
 F,G,H

A

B C ED

F G H I J

K L

14

Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I

A

B C ED

F G H I J

K L M

15

Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,

A

B C ED

F G H I J

K L M N

16

Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K, A

B C ED

F G H I J

K L M N

17

Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K,L A

B C ED

F G H I J

K L

O

M N

18

Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K,L, M, A

B C ED

F G H I J

K L

O

M N

19

Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K,L, M,N, A

B C ED

F G H I J

K L

O

M N

20

Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K,L, M,N,
 Goal state: O

A

B C ED

F G H I J

K L

O

M N

21

Breadth First Search

 The returned solution is the sequence of operators in the path:
A, B, G, L, O

A

B C ED

F G H I J

K L

O

M N

22

Depth First Search

Main idea: Expand node at the deepest level (breaking ties left to right).

Implementation: use of a Last-In-First-Out(LIFO) or stack operation. Enqueue nodes in
LIFO (last-in, first-out) order.

23

Depth First Search (DFS)

Given the following state space (tree search), give the sequence of
visited nodes when using DFS (assume that the nodeO is the goal
state):

A

B C ED

F G H I J

K L

O

M N

24

Depth First Search

 A,

A

B C ED

25

Depth First Search

 A,B,

A

B C ED

F G

26

Depth First Search

 A,B,F,

A

B C ED

F G

27

Depth First Search

 A,B,F,
 G,

A

B C ED

F G

K L

28

Depth First Search

 A,B,F,
 G,K,

A

B C ED

F G

K L

29

Depth First Search

 A,B,F,
 G,K,
 L,

A

B C ED

F G

K L

O

30

Depth First Search

 A,B,F,
 G,K,
 L, O: Goal State

A

B C ED

F G

K L

O

31

Depth First Search

The returned solution is the sequence of operators in the path:
A, B, G, L, O

A

B C ED

F G

K L

O

32

Depth-Limited Search (DLS)

Main idea: Expand node at the deepest level, but limit depth to L.

Implementation:
Enqueue nodes in LIFO (last-in, first-out) order. But limit depth to L

33

Depth-Limited Search (DLS)

Given the following state space (tree search), give the sequence of
visited nodes when using DLS (Limit = 2):

A

B C ED

F G H I J

K L

O

M N

Limit = 0

Limit = 1

Limit = 2

34

Depth-Limited Search (DLS)

 A,

A

B C ED

Limit = 2

35

Depth-Limited Search (DLS)

 A,B,

A

B C ED

F GLimit = 2

36

Depth-Limited Search (DLS)

 A,B,F,

A

B C ED

F GLimit = 2

37

Depth-Limited Search (DLS)

 A,B,F,
 G,

A

B C ED

F GLimit = 2

38

Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,

A

B C ED

F G HLimit = 2

39

Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,

A

B C ED

F G HLimit = 2

40

Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D, A

B C ED

F G H I JLimit = 2

41

Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D,I A

B C ED

F G H I JLimit = 2

42

Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D,I
 J,

A

B C ED

F G H I JLimit = 2

43

Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D,I
 J,
 E

A

B C ED

F G H I JLimit = 2

44

Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D,I
 J,
 E, Failure

A

B C ED

F G H I JLimit = 2

45

Depth-Limited Search (DLS)

 DLS algorithm returns Failure (no solution)
 The reason is that the goal is beyond the limit (Limit =2): the goal

depth is (d=4)

A

B C ED

F G H I J

K L

O

M N

Limit = 2

Basic Search Algorithms
Uninformed Search

Iterative Deepening Search (IDS)

47

Iterative Deepening Search (IDS)

function ITERATIVE-DEEPENING-SEARCH():

for depth = 0 to infinity do
if DEPTH-LIMITED-SEARCH(depth) succeeds

then return its result
end
return failure

48

Iterative Deepening Search (IDS)

 Key idea: Iterative deepening search (IDS) applies DLS repeatedly with
increasing depth. It terminates when a solution is found or no solutions
exists.

 IDS combines the benefits of BFS and DFS: Like DFS the memory
requirements are very modest (O(bd)). Like BFS, it is complete when the
branching factor is finite.

 The total number of generated nodes is :

N(IDS)=(d)b + (d-1) b2 + …+(1)bd

 In general, iterative deepening is the preferred uninformed search method
when there is a large search space and the depth of the solution is not
known.

49

Iterative Deepening Search (IDS)

L = 0

L = 1

L = 2

L = 3

 Key idea: Iterative deepening search (IDS) applies DLS repeatedly with increasing
depth. It terminates when a solution is found or no solutions exists.

50

Iterative Deepening Search (IDS)

51

Iterative Deepening Search (IDS)
Given the following state space (tree search), give the sequence of
visited nodes when using IDS:

A

B C ED

F G H I J

K L

O

M N

Limit = 0

Limit = 1

Limit = 2

Limit = 3

Limit = 4

52

Uniform Cost Search (UCS)

 Main idea: Expand the cheapest node. Where the cost is the path cost g(n).

 Implementation:
Enqueue nodes in order of cost g(n).
QUEUING-FN:- insert in order of increasing path cost.
Enqueue new node at the appropriate position in the queue so that we dequeue the
cheapest node.

53

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9][6]

[x] = g(n)

path cost of node n

Goal state

54

Uniform Cost Search (UCS)

25

[5] [2]

55

Uniform Cost Search (UCS)

25

1 7

[5] [2]

[9][3]

56

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

57

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9][6]

58

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9]

Goal state
path cost
g(n)=[6]

59

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9][6]

Conclusion of The Chapter

• Conclusion #1
– BFS implement FIFO (queue) for the search operation

• Conclusion #2
– DFS implement LIFO (stack) for the search operation

• Conclusion #3
– DLS implement DFS with level limitation

• Conclusion #4
– IDS implement DLS with level increment

• Conclusion #5
– UCS use cheapest cost node to expand

