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Chapter Description

• Expected Outcomes
– Student able to review the breadth firsts search, death first 

search, depth limited search, iterative deepening search and 
uniform cost search

– Student able to analyse and apply the searches to solve a given 
problem

• References
– ……..



Content #1

• What is artificial intelligence?

• History of artificial intelligence

• Example of artificial intelligence application
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Breadth First Search (BFS)

Main idea: Expand all nodes at depth (i) before expanding nodes at depth (i + 1)
Level-order Traversal.

Implementation: Use of a First-In-First-Out queue (FIFO). Nodes visited first are 
expanded first. Enqueue nodes in FIFO (first-in, first-out) order.



5

Breadth First Search

Given the following state space (tree search), give the sequence of 
visited nodes when using BFS (assume that the nodeO is the goal 
state):

A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

 A,

A

B C ED
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Breadth First Search

 A,
 B,

A

B C ED

F G
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Breadth First Search

 A,
 B,C

A

B C ED

F G H
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Breadth First Search

 A,
 B,C,D

A

B C ED

F G H I J
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Breadth First Search

 A,
 B,C,D,E

A

B C ED

F G H I J
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Breadth First Search

 A,
 B,C,D,E,
 F,

A

B C ED

F G H I J
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Breadth First Search

 A,
 B,C,D,E,
 F,G

A

B C ED

F G H I J

K L
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Breadth First Search

 A,
 B,C,D,E,
 F,G,H

A

B C ED

F G H I J

K L
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Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I

A

B C ED

F G H I J

K L M
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Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,

A

B C ED

F G H I J

K L M N
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Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K, A

B C ED

F G H I J

K L M N
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Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K,L A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K,L, M, A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K,L, M,N, A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

 A,
 B,C,D,E,
 F,G,H,I,J,
 K,L, M,N,
 Goal state: O

A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

 The returned solution is the sequence of operators in the path:
A, B, G, L, O

A

B C ED

F G H I J

K L

O

M N
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Depth First Search

Main idea: Expand node at the deepest level (breaking ties left to right). 

Implementation: use of a Last-In-First-Out(LIFO) or stack operation. Enqueue nodes in 
LIFO (last-in, first-out) order.
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Depth First Search (DFS)

Given the following state space (tree search), give the sequence of 
visited nodes when using DFS (assume that the nodeO is the goal 
state):

A

B C ED

F G H I J

K L

O

M N
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Depth First Search

 A,

A

B C ED
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Depth First Search

 A,B,

A

B C ED

F G
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Depth First Search

 A,B,F,

A

B C ED

F G
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Depth First Search

 A,B,F,
 G,

A

B C ED

F G

K L
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Depth First Search

 A,B,F,
 G,K,

A

B C ED

F G

K L
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Depth First Search

 A,B,F,
 G,K,
 L,

A

B C ED

F G

K L

O
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Depth First Search

 A,B,F,
 G,K,
 L, O: Goal State

A

B C ED

F G

K L

O
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Depth First Search

The returned solution is the sequence of operators in the path:
A, B, G, L, O

A

B C ED

F G

K L

O
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Depth-Limited Search (DLS)

Main idea: Expand node at the deepest level, but limit depth to L.

Implementation: 
Enqueue nodes in LIFO (last-in, first-out) order. But limit depth to L 
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Depth-Limited Search (DLS)

Given the following state space (tree search), give the sequence of 
visited nodes when using DLS  (Limit = 2):

A

B C ED

F G H I J

K L

O

M N

Limit = 0

Limit = 1

Limit = 2
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Depth-Limited Search (DLS)

 A,

A

B C ED

Limit = 2
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Depth-Limited Search (DLS)

 A,B,

A

B C ED

F GLimit = 2
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Depth-Limited Search (DLS)

 A,B,F,

A

B C ED

F GLimit = 2
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Depth-Limited Search (DLS)

 A,B,F,
 G,

A

B C ED

F GLimit = 2
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Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,

A

B C ED

F G HLimit = 2
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Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,

A

B C ED

F G HLimit = 2
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Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D, A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D,I A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D,I
 J,

A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D,I
 J,
 E

A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

 A,B,F,
 G,
 C,H,
 D,I
 J,
 E, Failure

A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

 DLS algorithm returns Failure (no solution)
 The reason is that the goal is beyond the limit (Limit =2): the goal 

depth is (d=4)

A

B C ED

F G H I J

K L

O

M N

Limit = 2



Basic Search Algorithms
Uninformed Search

Iterative Deepening Search (IDS)
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Iterative Deepening Search (IDS)

function ITERATIVE-DEEPENING-SEARCH():

for depth = 0 to infinity do
if DEPTH-LIMITED-SEARCH(depth) succeeds

then return its result 
end
return failure
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Iterative Deepening Search (IDS)

 Key idea: Iterative deepening search (IDS) applies DLS repeatedly with
increasing depth. It terminates when a solution is found or no solutions
exists.

 IDS combines the benefits of BFS and DFS: Like DFS the memory
requirements are very modest (O(bd)). Like BFS, it is complete when the
branching factor is finite.

 The total number of generated nodes is :

N(IDS)=(d)b + (d-1) b2 + …+(1)bd

 In general, iterative deepening is the preferred uninformed search method
when there is a large search space and the depth of the solution is not
known.



49

Iterative Deepening Search (IDS)

L = 0

L = 1

L = 2

L = 3

 Key idea: Iterative deepening search (IDS) applies DLS repeatedly with increasing
depth. It terminates when a solution is found or no solutions exists.
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Iterative Deepening Search (IDS)
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Iterative Deepening Search (IDS)
Given the following state space (tree search), give the sequence of 
visited nodes when using IDS:

A

B C ED

F G H I J

K L

O

M N

Limit = 0

Limit = 1

Limit = 2

Limit = 3

Limit = 4
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Uniform Cost Search (UCS)

 Main idea: Expand the cheapest node. Where the cost is the path cost g(n).

 Implementation:
Enqueue nodes in order of cost g(n).
QUEUING-FN:- insert in order of increasing path cost.
Enqueue new node at the appropriate position in the queue so that we dequeue the
cheapest node.
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Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9][6]

[x] = g(n) 

path cost of node n

Goal state
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Uniform Cost Search (UCS)

25

[5] [2]
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Uniform Cost Search (UCS)

25

1 7

[5] [2]

[9][3]
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Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]
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Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9][6]
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Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9]

Goal state 
path cost 
g(n)=[6]
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Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9][6]



Conclusion of The Chapter

• Conclusion #1
– BFS implement FIFO (queue) for the search operation 

• Conclusion #2
– DFS implement LIFO (stack) for the search operation 

• Conclusion #3
– DLS implement DFS with level limitation 

• Conclusion #4
– IDS implement DLS with level increment

• Conclusion #5
– UCS  use cheapest cost node to expand


