## CHAPTER 7

## KINEMATICS OF PARTICLE

Expected Outcome:

- Able to solve problems involving curvilinear motions of a particle or several particles
- Able to determine a acceleration, velocity and position, given the forces acting or determine the force required to produce a certain acceleration


## Application



## Introduction

- What is DYNAMICS ???



## Position, Velocity and Accelaration



- Average velocity $=\frac{\Delta x}{\Delta t}$

- Acceleration

$$
\begin{aligned}
a & =\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}} \\
\text { e.g. } \quad v & =12 t-3 t^{2} \\
a & =\frac{d v}{d t}=12-6 t
\end{aligned}
$$



Example:
Consider particle with motion given by equations below, determine the $\mathrm{x}, \mathrm{v}$ and a at $\mathrm{t}=0 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s}$ and, 6 s ?
$x=6 t^{2}-t^{3}$
$v=\frac{d x}{d t}=12 t-3 t^{2}$
$a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=12-6 t$


Ball tossed with $10 \mathrm{~m} / \mathrm{s}$ vertical velocity from window 20 m above ground.

Determine:

- velocity and elevation above ground at time $t$,
- highest elevation reached by ball and corresponding time, and
- time when ball will hit the ground and corresponding velocity.


## Problem 2

- Automobiles $A$ and $B$ are travelling in adjacent highway lanes and at $t$ $=0$ have the positions and speeds shown. Knowing that automobile A has a constant acceleration of $0.6 \mathrm{~m} / \mathrm{s}^{2}$ and that B has a constant deceleration of $0.4 \mathrm{~m} / \mathrm{s}^{2}$, determine (a) when and where A will overtake $B,(b)$ the speed of each automobile at that time.



## References:

1. Beer, Ferdinand P.; Johnston, E. Russell; "Vector Mechanics for Engineers - Statics", 8 ${ }^{\text {th }}$ Ed., McGraw-Hill, Singapore, 2007.
