CHAPTER 4

DISTRIBUTED FORCES:

 CENTROIDS AND CENTERS OF GRAVITYExpected Outcome:

- Able to determine centroids of composite areas and lines using the concept of the first moment of an area or a line
- Able to compute the area of a surface of revolution and of the volume of a body of revolution by using Theorem of Pappus Guldinus

Center of Gravity

- Center of gravity of a plate
- Center of gravity of a wire

$$
\begin{aligned}
\sum M_{y} \quad \bar{x} W & =\sum x \Delta W \\
& =\int x d W \\
\sum M_{x} \quad \bar{y} W & =\sum y \Delta W \\
& =\int y d W
\end{aligned}
$$

Centroids and First M oments of Areas and Cen Parlana Lines

- Centroid of an area

$$
\begin{aligned}
\bar{x} W & =\int x d W \\
\bar{x}(\gamma A t) & =\int x(\gamma t) d A \\
\bar{x} A & =\int x d A=Q_{y} \\
& =\text { first moment with respect to } y \\
\bar{y} A & =\int y d A=Q_{x} \\
& =\text { first moment with respect to } x
\end{aligned}
$$

- Centroid of a line

$$
\begin{aligned}
\bar{x} W & =\int x d W \\
\bar{x}(\gamma L a) & =\int x(\gamma a) d L \\
\bar{x} L & =\int x d L \\
\bar{y} L & =\int y d L
\end{aligned}
$$

(a)

- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center O if for every element $d A$ at (x, y) there exists an area $d A^{\prime}$ of equal area at $(-x,-y)$.
- The centroid of the area coincides with the center of symmetry.

Centroids of Common Shapes of Areas

Shape		$\bar{\chi}$	\bar{y}	Area
Triangular area			$\frac{h}{3}$	$\frac{b h}{2}$
Quarter-circular area		$\frac{4 r}{3 r}$	$\frac{4 r}{3 r}$	$\frac{\pi r^{2}}{4}$
Semicircular area	$\circ \frac{1 /}{o \mid}$	0	$\frac{4 r}{3 r}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area		$\frac{4 a}{3 \pi}$	$\frac{4 b}{3 n}$	$\frac{\pi c b}{4}$
Semielliptical area		0	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{2}$
Semiparabolic area		$\frac{3 a}{8}$	$\frac{3 h}{5}$	$\frac{20 h}{3}$
Parabolic area		0	$\frac{3 h}{5}$	$\frac{4 a h}{3}$
Parabolic spandrel		$\frac{3 a}{4}$	$\frac{3 h}{10}$	$\frac{g h}{3}$
General spandrel		$\frac{n+1}{n+2} a$	$\frac{n+1}{4 n+2} h$	$\frac{a h}{n+1}$
Circular sector		$\frac{2 r \sin \alpha}{3 \alpha}$	0	$a r^{2}$

Centroids of Common Shapes of Lines

Shape		\bar{x}	\bar{y}	Length
Quarter-circular arc				
Semicircular arc				

Composite Plates and Areas

- Composite plates

$$
\begin{aligned}
& \bar{X} \sum W=\sum \bar{x} W \\
& \bar{Y} \sum W=\sum \bar{y} W
\end{aligned}
$$

- Composite area

$$
\begin{aligned}
& \bar{X} \sum A=\sum \bar{x} A \\
& \bar{Y} \sum A=\sum \bar{y} A
\end{aligned}
$$

PROBLEM 5.1

Locate the centroid of the plane area shown.

	$A, \mathrm{~cm}^{2}$	$\bar{x}, \mathrm{~cm}$	$\bar{y}, \mathrm{~cm}$	$\bar{x} A, \mathrm{~cm}^{3}$	$\bar{y} A, \mathrm{~cm}^{3}$
1	8	0.5	4	4	32
2	3	2.5	2.5	7.5	7.5
Σ	11			11.5	39.5

$$
\begin{aligned}
& \bar{X} \Sigma A=\bar{x} A \\
& \bar{X}\left(11 \mathrm{~cm}^{2}\right)=11.5 \mathrm{~cm}^{3} \bar{X}=1.045 \mathrm{~cm} .4 \\
& \bar{Y} \Sigma A=\Sigma \bar{y} A \\
& \bar{Y}(11)=39.5 \\
& \hline
\end{aligned}
$$

$$
\bar{Y}=\frac{2}{3}(72 \mathrm{~mm})
$$

$$
\text { or } \bar{Y}=48.0 \mathrm{~mm}
$$

Dimensions in mm

	$A, \mathrm{~mm}^{2}$	$\bar{x}, \mathrm{~mm}$	$\bar{x} A, \mathrm{~mm}^{3}$
1	$\frac{1}{2} \times 30 \times 72=1080$	20	21,600
2	$\frac{1}{2} \times 48 \times 72=1728$	46	79,488
Σ	2808		101,088

SOLUTION

	$A, \mathrm{~cm}^{2}$	$\bar{x}, \mathrm{~cm}$	$\bar{y}, \mathrm{~cm}$	$\bar{x} A, \mathrm{~cm}^{3}$	$\bar{y} A, \mathrm{~cm}^{3}$
1	$\frac{1}{2}(12)(6)=36$	4	4	144	144
2	$(6)(3)=18$	9	7.5	162	135
Σ	54			306	279

SOLUTION

By symmetry, $\bar{X}=\bar{Y}$

	Component	$A, \mathrm{~cm}^{2}$	$\bar{x}, \mathrm{~cm}$	$\bar{x} A, \mathrm{~cm}^{3}$
I	Quarter circle	$\frac{\pi}{4}(10)^{2}=78.54$	4.244	333.32
II	Square	$-(5)^{2}=-25$	2.5	-62.5
Σ		53.54		270.82

$$
\begin{aligned}
\bar{X} \Sigma A=\Sigma \bar{x} A: \quad \bar{X}\left(53.54 \mathrm{~cm}^{2}\right) & =270.82 \mathrm{~cm}^{3} \\
\bar{X} & =5.0583 \mathrm{~cm}
\end{aligned}
$$

$$
\bar{X}=\bar{Y}=5.058 \mathrm{~cm}
$$

Theorems of Pappus-Guldinus

- Surface of revolution is generated by rotating a plane curve about a fixed axis.

- Theorem I: Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

$$
A=2 \pi \bar{y} L
$$

Theorrmanf nannir rildinir

- Body of revolution is generated by rotating a plane area about a fixed axis.

- Theorem II: Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$
V=2 \pi \bar{y} A
$$

PROBLEM 5.59

Determine the total surface area of the solid brass knob shown.

Area is obtained by rotating lines shown about the x-axis.

	$L, \mathrm{~cm}$	$\bar{y}, \mathrm{~cm}$	$\bar{y} L, \mathrm{~cm}^{2}$
1	0.5	0.25	0.1250
2	$\frac{\pi}{2}(0.75)=1.1781$	0.9775	1.1516
3	$\frac{\pi}{2}(0.75)=1.1781$	0.7725	0.9101
4	0.5	0.25	0.1250
Σ			2.3117

$$
A=2 \pi \Sigma \bar{y} L=2 \pi\left(2.3117 \mathrm{~cm}^{2}\right)
$$

References:

1. Beer, Ferdinand P.; Johnston, E. Russell; "Vector Mechanics for Engineers - Statics", 8 ${ }^{\text {th }}$ Ed., McGraw-Hill, Singapore, 2007.
