

CHAPTER 4

DISTRIBUTED FORCES: CENTROIDS AND CENTERS OF GRAVITY

Expected Outcome:

- Able to determine centroids of composite areas and lines using the concept of the first moment of an area or a line
- Able to compute the area of a surface of revolution and of the volume of a body of revolution by using Theorem of Pappus Guldinus

Center of Gravity

• Center of gravity of a plate

• Center of gravity of a wire

$$\sum M_{y} \quad \overline{x}W = \sum x\Delta W$$
$$= \int x \, dW$$
$$\sum M_{x} \quad \overline{y}W = \sum y\Delta W$$
$$= \int y \, dW$$

Centroids and First Moments of Areas and Universiti Malaysia Lines

y

Centroid of an area •

• Centroid of a line

$$\overline{x}W = \int x \, dW$$

$$\overline{x}(\gamma A t) = \int x (\gamma t) dA$$

$$\overline{x}A = \int x \, dA = Q_y$$

= first moment with respect to y

$$\overline{y}A = \int y \, dA = Q_x$$

= first moment with respect to x

 $\overline{x}W = \int x \, dW$ $\overline{x}(\gamma La) = \int x(\gamma a) dL$ $\overline{x}L = \int x \, dL$ $\overline{y}L = \int y \, dL$

- An area is symmetric with respect to an axis *BB*' if for every point *P* there exists a point *P*' such that *PP*' is perpendicular to *BB*' and is divided into two equal parts by *BB*'.
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center *O* if for every element *dA* at (*x*,*y*) there exists an area *dA*' of equal area at (-*x*,-*y*).
- The centroid of the area coincides with the center of symmetry.

Centroids of Common Shapes of Areas

Shape		x	ÿ	Area
Triangular area	$\frac{1}{1}\overline{y}$		<u>h</u> 3	<u>bh</u> 2
Quarter-circular area		4r 3r	<u>4 ग</u> 3ग	<u>πr²</u>
Semicircular area		0	<u>4r</u> 3व	$\frac{\pi r^2}{2}$
Quarter-elliptical area	C	<u>4а</u> Зт	<u>4b</u> Зл	<u>пав</u> 4
Semielliptical area	Semielliptical area $O \rightarrow \overline{x} \rightarrow O \rightarrow $	0	$\frac{4b}{3\pi}$	<u>πab</u> 2
Semiparabolic area		<u>3a</u> 8	3 <u>h</u> 5	$\frac{2ah}{3}$
Parabolic area $O = \overline{x}$		0	<u>3h</u> 5	<u>4ah</u> 3
Parabolic spandrel	$O \underbrace{\begin{array}{c} & & \\ & y = kx^2 \\ & & $	3 <u>a</u> 4	3 <u>h</u> 10	<u>ah</u> 3
General spandrel	o	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	<u>ah</u> n + 1
Circular sector	o a c	$\frac{2r\sin\alpha}{3\alpha}$.	0	ar ²

Centroids of Common Shapes of Lines

	x	\overline{y}	Length
	$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
$o \left \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right ^{\overline{y}} \left \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \left \begin{array}{c} & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \left \begin{array}{c} & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \left \begin{array}{c} & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left \left \left \begin{array}{c} & & \\ & & \\ \end{array} \right ^{-\frac{r}{2}} \left $	0	$\frac{2r}{\pi}$	πr
	$\frac{r\sin\alpha}{\alpha}$	0	2ar
		\overline{x}	$ \begin{array}{c c} \overline{x} & \overline{y} \\ \hline \hline \\ \hline \\$

Composite Plates and Areas

• Composite plates

 $\overline{X} \sum W = \sum \overline{x} W$ $\overline{Y} \sum W = \sum \overline{y} W$

- Composite area
 - $\overline{X} \sum A = \sum \overline{x}A$ $\overline{Y} \sum A = \sum \overline{y}A$

	A, cm^2	\overline{x} , c m	\overline{y} , cm	$\overline{x}A$, cm ³	$\overline{y}A$, cm ³
1	8	0.5	4	4	32
2	3	2.5	2.5	7.5	7.5
Σ	11			11.5	39.5

$\bar{X} = 1.045 \,\mathrm{cm}$.

\overline{Y} = 3.591cm.

or $\overline{Y} = 48.0 \text{ mm} \blacktriangleleft$

	A, mm^2	\overline{x} , mm	$\overline{x}A$, mm ³
1	$\frac{1}{2} \times 30 \times 72 = 1080$	20	21,600
2	$\frac{1}{2} \times 48 \times 72 = 1728$	46	79,488
Σ	2808		101,088

Then $\overline{X}A = \Sigma \overline{x}A$

 $\overline{X}(2808) = 101,088$

PROBLEM 5.4

Locate the centroid of the plane area shown.

SOLUTION

	A, cm ²	\overline{x} , cm	\overline{y} , cm	$\overline{x}A$, cm ³	$\overline{y}A$, cm ³
1	$\frac{1}{2}(12)(6) = 36$	4	4	144	144
2	(6)(3) = 18	9	7.5	162	135
Σ	54			306	279

• Surface of revolution is generated by rotating a plane curve about a fixed axis.

• **Theorem I**: Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

$$A = 2\pi \,\overline{y}L$$

• Body of revolution is generated by rotating a plane area about a fixed axis.

• **Theorem II**: Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$V = 2\pi \, \overline{y} A$$

PROBLEM 5.59

Determine the total surface area of the solid brass knob shown.

Area is obtained by rotating lines shown about the *x*-axis.

	<i>L</i> , cm	\overline{y} , cm	$\overline{y}L$, cm ²
1	0.5	0.25	0.1250
2	$\frac{\pi}{2}(0.75) = 1.1781$	0.9775	1.1516
3	$\frac{\pi}{2}(0.75) = 1.1781$	0.7725	0.9101
4	0.5	0.25	0.1250
Σ			2.3117

$$A = 2\pi\Sigma \overline{y}L = 2\pi(2.3117 \text{ cm}^2)$$

References:

 Beer, Ferdinand P.; Johnston, E. Russell; "Vector Mechanics for Engineers - Statics", 8th Ed., McGraw-Hill, Singapore, 2007.

