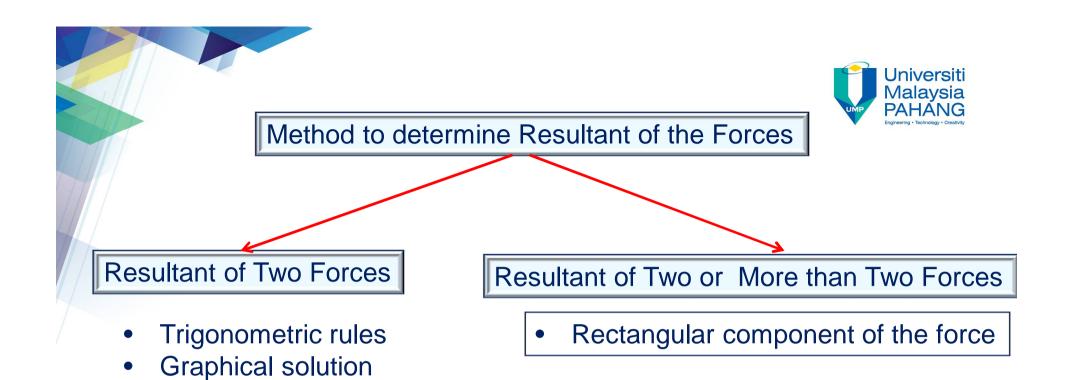


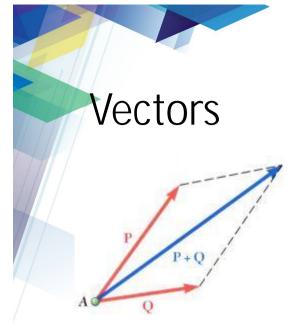
CHAPTER 2

STATICS OF PARTICLE

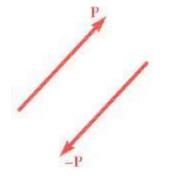
Expected Outcome:

- Able to determine the resultant of coplanar forces acting on a particle
- Able to resolve a force into its components
- Able to draw a free body diagram for a particle and solve a problems involving the equilibrium of a particle





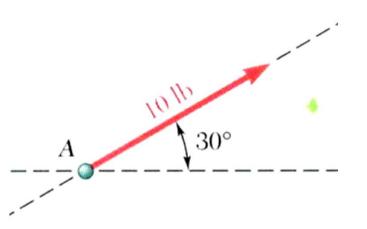
- *Vector*: parameter possessing magnitude and direction which add according to the parallelogram law. Examples: displacements, velocities, accelerations.
- *Scalar*: parameter possessing magnitude but not direction. Examples: mass, volume, temperature



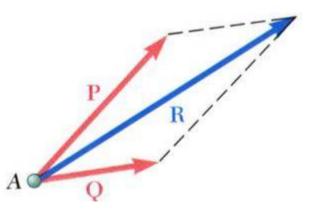
- *Negative* vector of a given vector has the same magnitude and the opposite direction.
 - Equal vectors have the same magnitude and direction.

• Force?

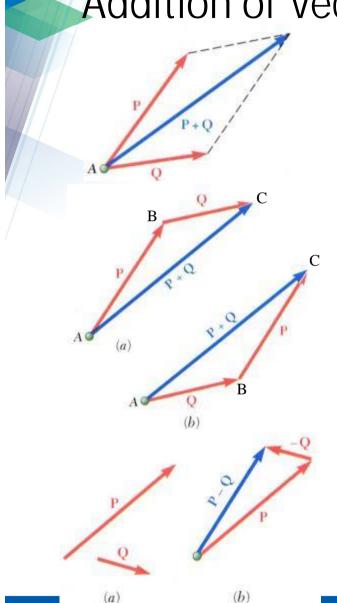
Action of one body on another; characterized by its *point of application*, *magnitude*, *line of action*, and *sense*.



- The combined effect of two forces (P and Q) can be represented by a single *resultant* force (labelled as R).
- The resultant is equivalent to the diagonal of a parallelogram which contains the two forces in adjacent legs.



Addition of Vectors



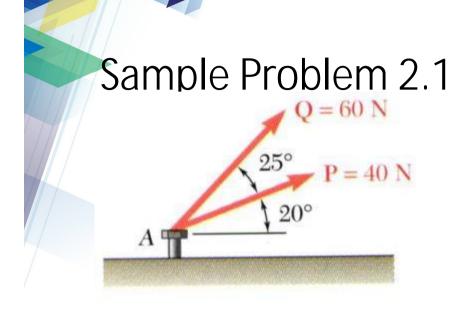
- Trapezoid rule for vector addition
- Triangle rule for vector addition
- Law of cosines,

$$R^{2} = P^{2} + Q^{2} - 2PQ\cos B$$
$$\vec{R} = \vec{P} + \vec{Q}$$

• Law of sines,

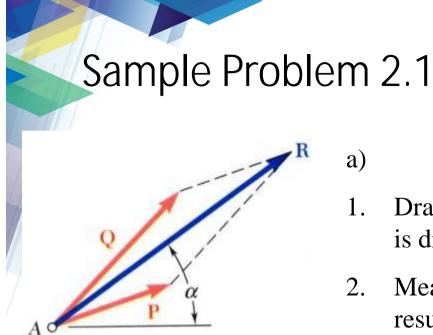
$$\frac{\sin A}{P} = \frac{\sin B}{R} = \frac{\sin C}{Q}$$

- Vector addition is commutative, $\vec{P} + \vec{Q} = \vec{Q} + \vec{P}$
- Vector subtraction

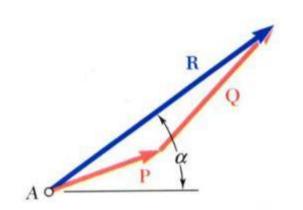


The two forces act on a bolt at A. Determine their resultant by using

- a) Graphical solution (trapezoid rule)
- b) Triangle rule



- **Graphical solution Step** –
- Draw a parallelogram with sides equal to **P** and **Q** is drawn to scale.
- 2. Measure the magnitude and direction of the resultant or of the diagonal to the parallelogram are measured, $\mathbf{R} = 98 \text{ N} \quad \alpha = 35^{\circ}$



- b) **Trigonometric solution Step** –
- 1. A triangle is drawn with **P** and **Q** head-to-tail and to scale.
- 2. Measure the magnitude and direction of the resultant or of the third side of the triangle.

contnue Sample Problem 2.1

 $R = \frac{C}{Q} = 60 \text{ N}$ $155^{\circ} = \frac{125^{\circ}}{A} = \frac{120^{\circ}}{B} = 40 \text{ N}$

Apply the triangle rule.

a) **From the Law of Cosines**,

$$R^{2} = P^{2} + Q^{2} - 2PQ\cos B$$

= (40N)² + (60N)² - 2(40N)(60N)cos155°
$$R = 97.73N$$

b) From the Law of Sines,

$$\frac{\sin A}{Q} = \frac{\sin B}{R}$$

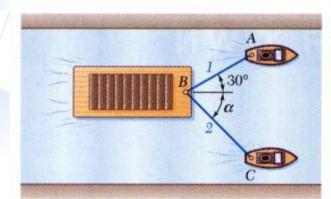
$$\sin A = \sin B \frac{Q}{R}$$

$$= \sin 155^{\circ} \frac{60N}{97.73N}$$

$$A = 15.04^{\circ}$$

$$\alpha = 20^{\circ} + A$$

Sample Problem 2.2

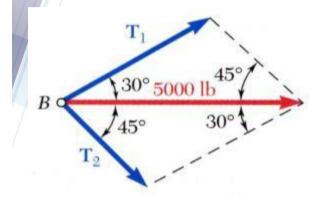


A barge is pulled by two tugboats. If the resultant of the forces exerted by the tugboats is 5000 lbf directed along the axis of the barge, determine:

- a) the tension in each of the ropes for $\alpha = 45^{\circ}$, using both method (graphical solution and triangle rule)
- b) the value of α for which the tension in rope 2 is a minimum.

Contnue Sample Problem 2.2

a)Find the tension in each rope for $\alpha = 45^{\circ}$



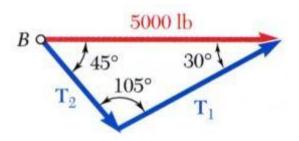
• Graphical solution - Parallelogram Rule with known resultant direction and magnitude, known directions for sides.

 $T_1 = 3700 \, \text{lbf}$ $T_2 = 2600 \, \text{lbf}$

• Trigonometric solution - Triangle Rule with Law of Sines

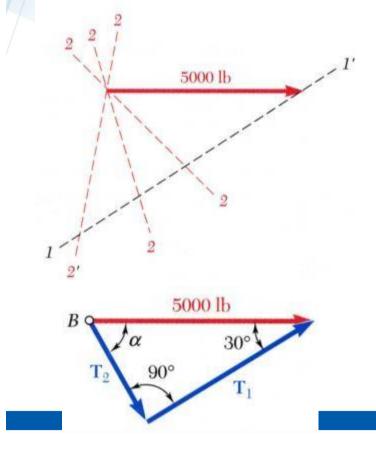
$$\frac{T_1}{\sin 45^\circ} = \frac{T_2}{\sin 30^\circ} = \frac{50001\text{bf}}{\sin 105^\circ}$$

$$T_1 = 3660 \, \text{lbf}$$
 $T_2 = 2590 \, \text{lbf}$



b) the value of α for which the tension in the tension in the tension in the tension is a minimum of the tension in the tension in the tension is a minimum of the tension in the tension is a minimum of tensi

• The angle is determined by applying the Triangle Rule and observing the effect of variations in α .

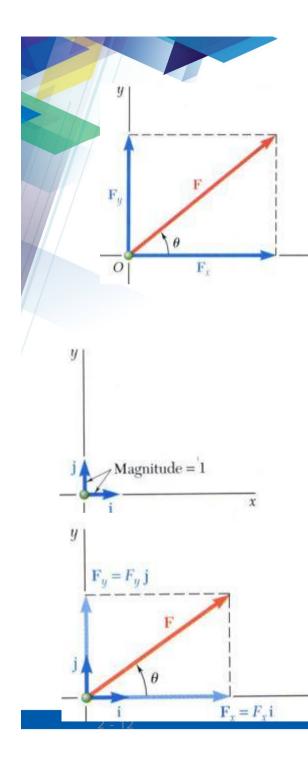


• The minimum tension in rope 2 occurs when T_1 and T_2 are perpendicular.

$$T_2 = (5000 \,\mathrm{lbf}) \sin 30^\circ$$
 $T_2 = 2500 \,\mathrm{lbf}$

$$T_1 = (50001 \text{bf}) \cos 30^\circ$$
 $T_1 = 43301 \text{bf}$

$$\alpha = 90^{\circ} - 30^{\circ} \qquad \qquad \alpha = 60^{\circ}$$



Rectangular componets of a Forces

• \vec{F}_x and \vec{F}_y are referred to as *rectangular vector* components and $\vec{F} = \vec{F}_x + \vec{F}_y$

- Unit vectors \vec{i} and \vec{j} which are parallel to the x and y axes.
- Vector components may be expressed as $\vec{F} = F_x \vec{i} + F_y \vec{j}$
- F_x and F_y are referred to as the *scalar components* of

 $F_x=F\cos\theta$

x

 $F_y = F \sin \theta$

Addition of Forces by Summing Components Oi A R,i

Wish to find the resultant of 3 or more concurrent forces,

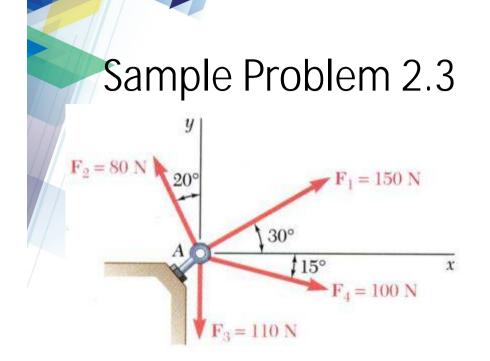
 $\vec{R} = \vec{P} + \vec{Q} + \vec{S}$

- Resolve each force into rectangular components $R_{x}\vec{i} + R_{y}\vec{j} = P_{x}\vec{i} + P_{y}\vec{j} + Q_{x}\vec{i} + Q_{y}\vec{j} + S_{x}\vec{i} + S_{y}\vec{j}$ = $(P_{x} + Q_{x} + S_{x})\vec{i} + (P_{y} + Q_{y} + S_{y})\vec{j}$
 - The scalar components of the resultant are equal ulletto the sum of the corresponding scalar components of the given forces.

$$\begin{aligned} R_x &= P_x + Q_x + S_x \\ &= \sum F_x \end{aligned} \qquad \begin{aligned} R_y &= P_y + Q_y + S_y \\ &= \sum F_y \end{aligned}$$

To find the resultant magnitude and direction, ullet

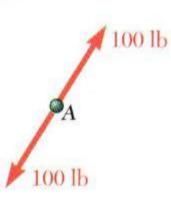
$$R = \sqrt{R_x^2 + R_y^2} \qquad \theta = \tan^{-1} \frac{R_y}{R_y}$$



Four forces act on bolt *A* as shown. Determine the resultant of the force on the bolt.

Equilibrium of a Particle

- When the resultant of all forces acting on a particle is zero, the particle is in *equilibrium*.
- *Newton's First Law*: If the resultant force on a particle is zero, the particle will remain at rest or will continue at constant speed in a straight line.



- $F_4 = 400 \text{ lb}$ $F_1 = 300 \text{ lb}$ $F_2 = 173.2 \text{ lb}$ $F_3 = 200 \text{ lb}$ $F_2 = 173.2 \text{ lb}$ $F_3 = 200 \text{ lb}$ $F_2 = 173.2 \text{ lb}$
- Particle acted upon by two forces:
 - equal magnitude
 - same line of action
 - opposite sense

• Particle acted upon by three or more forces:

 $\sum F_x = 0$ $\sum F_y = 0$

- graphical solution yields a closed polygon
- algebraic solution

$$\vec{R} = \sum \vec{F} = 0$$

Sample Problem 2.3

 $(F_1 \cos 30^\circ)$ i

 $-(F_4 \sin 15^\circ)$ j

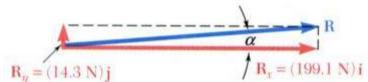
 $F_{\rm A} \cos 15^\circ)$ i

 $(F_1 \sin 30^\circ)$ j

SOLUTION:

• Resolve each force into rectangular components.

force	mag	x-comp	y-comp
$\vec{F_1}$	150	+129.9	+75.0
\vec{F}_2	80	-27.4	+75.2
\vec{F}_3	110	0	-110.0
\vec{F}_4	100	+96.6	-25.9
		$R_{\chi} = +199.1$	$R_y = +14.3$

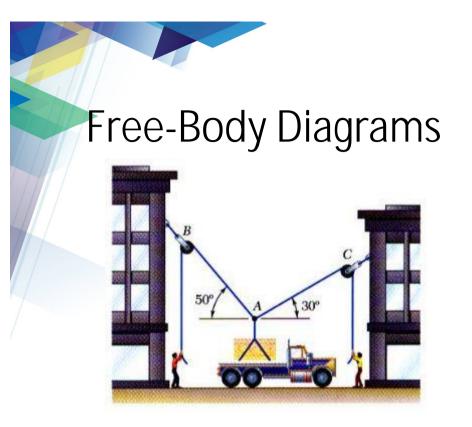


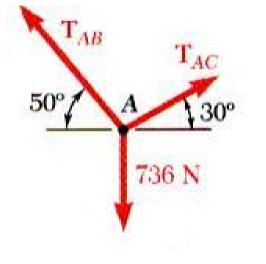
- Determine the components of the resultant by adding the corresponding force components.
- Calculate the magnitude and direction.

$$R = \sqrt{199.1^{2} + 14.3^{2}} \qquad R = 199.6N$$
$$\tan \alpha = \frac{14.3N}{199.1N} \qquad \alpha = 4.1^{\circ}$$

 $(F_2 \cos 20^\circ)$ j

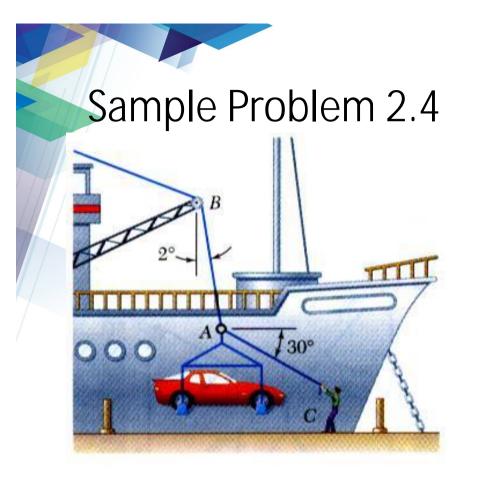
 $-(F_2\sin 20^\circ)\mathbf{i}$





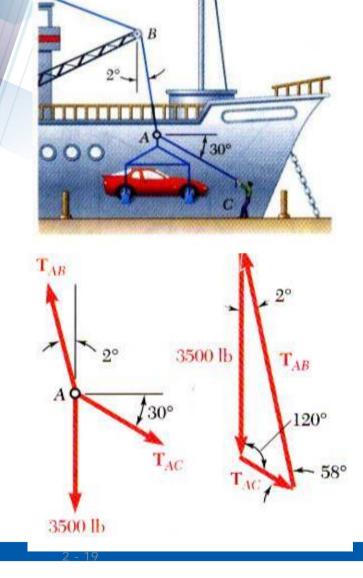
Space Diagram: A sketch showing the physical conditions of the problem.

Free-Body Diagram: A sketch showing only the forces on the selected particle.



In a ship-unloading operation, a 3500-lb automobile is supported by a cable. A rope is tied to the cable and pulled to center the automobile over its intended position. What is the tension in the rope?

Sample Problem 2.4



SOLUTION:

- Construct a free-body diagram for the particle at *A*.
- Apply the conditions for equilibrium.
- Solve for the unknown force magnitudes.

$$\frac{T_{AB}}{\sin 120^{\circ}} = \frac{T_{AC}}{\sin 2^{\circ}} = \frac{35001b}{\sin 58^{\circ}}$$
$$T_{AB} = 35701b$$
$$T_{AC} = 1441b$$

References:

 Beer, Ferdinand P.; Johnston, E. Russell; "Vector Mechanics for Engineers - Statics", 8th Ed., McGraw-Hill, Singapore, 2007.

