Exercise Chapter 4 The Properties of Mixtures

by
Izirwan Bin Izhab FKKSA
izirwan@ump.edu.my

Self Test 1

- Calculate the molality of a sulfuric acid containing 24.4 g of sulfuric acid in 198 g of water. The molar mass sulfuric acid is $98.08 \mathrm{~g} / \mathrm{mol}$.
- Ans: 1.26 m
(C) $($

Self Test 2

- Determine the mole fraction of glycine molecules in $0.14 \mathrm{mH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ (aq).
- Ans: $X_{g l y}=2.52 . \times 10^{-3}$

Self Test 3

- What is the total volume of a mixture of 50 g of ethanol and 50 g of water at $25^{\circ} \mathrm{C}$?
- Given $\mathrm{M}_{\text {water }}=18 \mathrm{~g} / \mathrm{mol}$ $\mathrm{M}_{\text {ethanol }}=46.07 \mathrm{~g} / \mathrm{mol}$.
- (Refer to figure 6.1 in textbook)
- Ans $=110 \mathrm{~cm}^{3}$

Self Test 4

Use figure 6.1 to calculate the mass density of a mixture of 20 g of water and 100 g of ethanol.

Ans $=0.84 \mathrm{~g} \mathrm{~cm}^{-3}$

Self Test 5

At $25^{\circ} \mathrm{C}$, the density of a 50% by mass ethanol/water solution is $0.914 \mathrm{gcm}^{-3}$. Given that the partial molar volume of water in the solution is $17.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, what is the partial molar volume of the ethanol?

Ans $=56.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
(C)

Self Test 6

N_{2} and O_{2} are mixed to form air at 298.15 K . Mole fraction of N_{2} and O_{2} are 0.78 and 0.22 , respectively. Compute the molar Gibbs of energy mixing. Then, find the molar entropy of mixing. Thus, evaluate whether the mixing was spontaneous or not.

Ans $=-1.2 \mathrm{~kJ} / \mathrm{mol}, 4.38 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$, Spontaneous mixing because $\Delta \mathrm{G}<0$

Self Test 7

Suppose now that argon is added to the mixture to bring the composition closer to real air with mole fraction $0.78,0.21,0.0096$, respectively. What is the new molar Gibbs energy and entropy? Is the mixing spontaneous? Ans: - $1.4 \mathrm{~kJ} / \mathrm{mol}, 4.71 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$, spontaneous.

Communitising Technology

Self Test 8

- A solution is prepared by dissolving $1.5 \mathrm{~mol}_{10} \mathrm{H}_{8}$ in 1 kg of benzene. The vapour pressure of pure benzene is 12.6 kPa at $25^{\circ} \mathrm{C}$. What is the partial vapour pressure of benzene in solution?
Ans: 11.3 kPa
(C) (i) (\$) The Properties of Mixtures by Izirwan

Authors Information

Credit to the authors: Dr Suriati Ghazali, Dr Sunarti Abd Rahman, Dr Azizul Helmi, Dr Norhayati Abdullah

Communitising Technology

