

CHAPTER 1

Introduction to Mechanics

Expected Outcome:

Able to describe the fundamental concepts and principles in engineering mechanics

What is Mechanics?

 Science which describes and predicts the conditions of rest or motion of bodies under the action of forces.

Branches of mechanics

Mechanics

What may happen if static's is not applied properly?

Important Fundamental Concepts in Mechanics

- *Space* / distance
- Time
- Mass
- *Force* represents the action of one body on another (represents in form of magnitude and direction)

Fundamental Principles of Newton's Law

• Newton's First Law:

If the resultant force on a particle is zero, the particle will remain at rest or continue to move in a straight line.

• Newton'sSecond Law:

A particle will have an acceleration proportional to a nonzero resultant applied force.

- *Newton's Third Law*: The forces of action and reaction between two particles have the same magnitude and line of action with opposite sense.
- *Newton's Law of Gravitation*: Two particles are attracted with equal and opposite forces

References:

- Beer, Ferdinand P.; Johnston, E. Russell; "Vector Mechanics for Engineers - Statics", 8th Ed., McGraw-Hill, Singapore, 2007.
- Beer, Ferdinand P.; Johnston, E. Russell; "Vector Mechanics for Engineers - Dynamics", 8th Ed., McGraw-Hill, Singapore, 2007.

