

Physical Chemistry

Chapter 1 Introduction to Physical Chemistry

By Dr. Norhayati Abdullah Faculty of Chemical and Natural Resources Engineering

yatiabdullah@ump.edu.my

Introduction to Physical Chemistry by Norhayati

Communitising Technology

1.0 Introduction to Physical Chemistry

Aims

- To explain the underlying physicals principles that govern the properties and behavior of chemical systems
- To explain and describe the four areas of physical chemistry: thermodynamics, quantum chemistry, statistical mechanics and kinetics of gases and their transport properties
- Expected Outcomes
 - Student able to explain the underlying physicals principles that govern the properties and behavior of chemical systems.
 - Student able to explain and describe the four areas of physical chemistry: thermodynamics, quantum chemistry, statistical mechanics and kinetics of gases and their transport properties
- References
 - P. Atkins and J. D. Paula, Elements of Physical Chemistry, 5th Ed. Freeman, Oxford.
 - P. Atkins and L. Jones CHEMISTRY Molecules, Matter, and Change, 3rd Ed Freeman, Oxford.
 - R.Chang, Chemistry, Mc Graw Hill.

Subtopics

1.1 Introduction to Physical Chemistry
1.2 Introduction to thermodynamics
1.3 Thermodynamics systems
1.4 Thermodynamics equilibrium
1.5 Thermodynamics properties
1.6 Temperature and Pressure
1.7 Ideal and Real Gases

1.1 INTRODUCTION TO PHYSICAL CHEMISTRY

• Understanding the quantitative aspect of chemical phenomena.

Physical chemistry can

be divided into

• The study of underlying physical principles that govern the properties and behavior of chemical systems.

- Quantum chemistry
- Statistical mechanics

Thermodynamics is:

- Science of energy
- Ways energy is stored within a body
- How energy transforms
- Involve heat and work (may take place)

Introduction to Physical Chemistry by Norhayati

2

Kinetics

1.2 INTRODUCTION TO THERMODYNAMICS

- **Definition** of Thermodynamic Boundary- the obvious separation between system and surroundings
- There three types of thermodynamic boundaries

1.3 THERMODYNAMICS SYSTEM

1.2.1 Thermodynamics systems consist of:

(Source: https://en.wikipedia.org/wiki/File:System_boundary2.svg)

System:

Quantity of matter or region in space chosen for study

Surrounding:

Mass or region outside the system

Boundary: Surface separate system from surrounding

Introduction to Physical Chemistry by Norhayati

niversit

(Source: http://keywordsuggest.org/gallery/16039.html)

- Opened system
 - Have mass and energy flow across their boundries.
- Closed system
 - Closed system does not have mass flow across the boundary.
 - Only energy

Ophtroducctionico RhysicsadaCChermistry by Norhayatti

Jniversiti

Aalavsia

Isolated system

- No interaction between system and surrounding
- Neither matter nor energy can be transferred between system and surrounding.

Definition:

- no changes, macroscopic properties remain constant with time.

Types of equilibrium:

- Thermal
- Mechanical
- Phase
- Chemical/ material

1.4 THERMODYNAMICS EQUILIBRIUM

(Source: https://www.flickr.com/photos/goalfinder/6806035586)

1.4 THERMODYNAMICS EQUILIBRIUM (CONT..)

- 2. Mechanical equilibrium
 - Related to pressure
 - There is no change in pressure at any point of the system with time.
 - Whenever the net force on an object is zero, the object is in mechanical equilibrium

1.4 THERMODYNAMICS EQUILIBRIUM

- 3. Phase equilibrium
- If a system involves two phases, it is in phase equilibrium when the mass of each phase reaches an equilibrium level and stays there

1.4 THERMODYNAMICS EQUILIBRIUM

- 3. Chemical equilibrium
 - Chemical composition does not change with time
 - No chemical reactions occur

Communitising Technology

- Intensive variable
 - ✓ Independent of the amount of mass of the system
 - Pressure (P),
 - Temperature (T)
 - Specific volume
 - Density (ρ)

Extensive variable

 ✓ Depend on the size of the system

- Total volume (V_t)
- mass (m)

1.6 TEMPERATURE AND PRESSURE

Zeroth Law of Thermodynamics: If two systems are separately found to be in thermal equilibrium with a third system, the first two systems are in thermal equilibrium with each other.

(Source: https://www.slideshare.net/gunabalans/02-part1-thermo-laws-zeroth-law)

Introduction to Physical Chemistry by Norhayati

Communitising Technology

1.6 TEMPERATURE AND PRESSURE

1.6.1 Temperature Scale

Ice point

Temperature equilibrium between pure ice and liquid water with air saturated with vapor 0°C at 1 atm

Steam point

Temperature equilibrium between pure liquid water and water vapor 100°C at 1 atm

1.6 TEMPERATURE AND PRESSURE VIIVERSITI

Conversion Unit

 $T K = T^{\circ}C + 273.15$ $T R = T^{\circ}F + 459 67$ T R = 1.8 T K $T^{\circ}F = \frac{9}{-}T^{\circ}C + 32$

Pressure

$$P = \frac{Force}{Area} = \frac{F}{A}$$

$$1 kPa = 10^{3} \frac{N}{m^{2}}$$
$$1 MPa = 10^{6} \frac{N}{m^{2}} = 10^{3} kPa$$

1.7 IDEAL AND REAL GASES

1.7.1 Ideal Gas/Perfect gas

At low pressure and high temperature, the density of the gases decrease and the gas behave as an ideal gas.

PV = nRTPV = mRT / M $Pm = \rho RT$ $\bigcirc \bigcirc \bigcirc \odot \odot$

Values of the gas constant, R

Values of the Universal Gas Constant R				
Values of R	Units		Values of R	Units
8.314472	J•K ⁻¹ •mol ⁻¹		83.14472	L•mbar•K ^{•1} •mol ^{•1}
0.082057	L-atm-K ⁻¹ -mol ⁻¹		8.314472 × 10 ⁻⁵	m ³ ∙bar∙K ⁻¹ ∙mol ⁻¹
8.205745 × 10 ⁻⁵	m ³ •atm•K ⁻¹ •mol ⁻¹		10.73159	ft ³ ∙psi•°R ⁻¹ •Ib-mol ⁻¹
8.314472	L•kPa•K ⁻¹ •mol ⁻¹		0.73024	ft ³ •atm•°R ⁻¹ •lb-mol ⁻¹
8.314472	m ³ •Pa•K ⁻¹ •mol ⁻¹		1.98588	Btu∙°R ⁻¹ •lb-mol ⁻¹
82.05745	cm³∙atm∙K ⁻¹ •mol ⁻¹		62.36367	L•torr•K ⁻¹ •mol ⁻¹

(Source: https://chemengineering.wikispaces.com/file/view/Gas_Constant.png/242836283/Gas_Constant.png)

1.7.1 Ideal Gas Laws

✓ Boyle's Law

➤ The pressure of a fixed amount of gas at constant temperature is inversely proportional to the volume (n and T constant)

✓ Charles' Law

 \succ The volume of a fixed amount of gas in a container at constant P and n is directly proportional to the absolutely temperature.

 \succ The pressure of a fixed amount of gas in a container at constant volume is proportional to the absolute temperature

✓Avogadro's Principle

Volume of any gas is directly proportional to the particles number at constant T and P

 $V\alpha n$

1.7.2 Ideal Gas Mixtures

✓ Dalton's Law

Total pressure of an ideal gas mixture is equal to the sum of the partial pressure of the individual gases

$$P = P_A + P_B + \dots$$

✓Real gas

>exhibit properties that cannot be explained entirely using the ideal gas law

- ➤Gases tend to behave ideally in two different situations
 - High Temperature
 - Low Pressure
- ➤Intermolecular forces;
- Attractive: dipole-dipole forces, H-bonds, dispersion forces
- Repulsive: repulsion of electrons
- ≻Measure;
- Compressibility factor, Z
- Virial equations
- ✤Van Der Waals equation

✓ Compressibility Factor, Z One way to measure the deviation from ideal behaviour is to define a compressibility factor, Z as: $Z = \frac{PV}{RT}$

Where V the molar volume of the gas, V/n

For an ideal gas Z=1Departure from Z=1

 A gas is not behaving as an ideal gas

Intermediate Pressure: Z < 1

- Compression is favoured, due to dominance of attractive forces
- High Pressure: Z > 1
- Expansion is favoured, as repulsive forces come into play

(Source:

http://faculty.chem.queensu.ca/people/faculty/mombourqu ette/Chem221/1_Gases/Index.asp

Conclusion of Introduction to Physical Chemistry

- Conclusion
 - Physical chemistry is the quantitative aspect of chemical phenomena.
 - Thermodynamics systems consist of surrounding, boundary and system and divided into opened system, closed system and isolated system.
 - Thermodynamics equilibrium consist of thermal, mechanical, phase and chemical/ material equilibrium
 - Thermodynamics properties included intensive variable and extensive variable
 - Zeroth Law state if two systems are separately found to be in thermal equilibrium with a third system, the first tow systems are in thermal equilibrium with each other.
 - Real gases exhibit properties that cannot be explained entirely using the ideal gas law

Author Information

Credit to the authors: Dr Suriati Ghazali, Dr Sunarti Abd Rahman, Dr

Introduction to Physical Chemistry by Norhayati

Communitising Technology