BMM3643 Manufacturing Processes Bulk Metal Deformation

Individual Assignment 4

by

Dr Mas Ayu Bt Hassan

Faculty of Mechanical Engineering
masszee@ump.edu.my

Individual Assignment 4 - Bulk Metal Deformation

- Aims
- Able to apply formulae depends on various types of forging force
- Able to analyze and apply true stress versus true strain graph in forging force calculation
- Expected Outcomes
- Understand and able to apply the suitable formulae depends on types of forging processes

Example 1: Open die forging force

1. A solid cylindrical slug made of 304 stainless steel is 150 mm in diameter and 100 mm high. It is reduced in height by 50% at room temperature by open-die forging with flat dies. Assuming that the coefficient of friction is 0.2 , calculate the forging force at the end of the stroke.

Solution:
The forging force at the end of the stroke: $F=\gamma_{f} \pi r^{2}(1+(2 \mu r / 3 h))$
Final dimensions: Final height, $h=100 / 2=50 \mathrm{~mm}$,
To get the final radius, r
volume constancy: volumes before deformation = volumes after deformation

$$
\begin{aligned}
& (\pi)(75)^{\wedge} 2(100)=(\pi)(r)^{\wedge} 2(50) \Rightarrow r=106 \mathrm{~mm} \\
& \varepsilon=\ln \left(\frac{100}{50}\right)=0.69
\end{aligned}
$$

Example 1: Open die forging force (continue)

Solution:

From the graph, the flow stress for 304 stainless steel at a true strain of 0.69 is about 1000 MPa . (forging force must be in units N and m)

$$
\begin{aligned}
\mathrm{F} & =\mathrm{Y}_{\mathrm{f}} \pi \mathrm{r}^{2}(1+(2 \mu \mathrm{r} / 3 \mathrm{~h})) \\
F & =(1000)\left(10^{6}\right)(\pi)(0.106)^{2}(1)+\frac{(2)(0.2)(0.106)}{(3)(0.050)} \\
& =4.5 \times 10^{7} \mathrm{~N}=45 \mathrm{MN}
\end{aligned}
$$

Example 2: Drawing force

1. A round wire made of a perfectly plastic material with a yield stress of 200 MPa is being drawn from a diameter of 2.5 to 1.5 mm in a draw die of 15°. Let the coefficient of friction be 0.1. Estimate the drawing force required for both friction and frictionless conditions.

Solution:

$\mathrm{d}_{0}=2.5 \mathrm{~mm}$, so the initial cross-sectional area is $A_{0}=\frac{\pi}{4} d^{2}{ }_{0}=4.909 \mathrm{~mm}^{2}$
$d_{f}=1.5 \mathrm{~mm}, A_{f}=1.767 \mathrm{~mm}^{2}, F=Y_{\text {avg }} A_{f} \ln A_{o} / A_{f}=361 \mathrm{~N}$
Therefore, $\mu=0.1, \alpha=15^{\circ}=0.262$ radians,

$$
\begin{aligned}
F & =Y_{\text {avg }} A_{f}\left[(1+\mu / \alpha) \ln \left(A_{o} / A_{f}\right)+(2 / 3) \alpha\right] \\
& =\underline{560 N}
\end{aligned}
$$

Individual Assignment 4

1. A round billet made of $70-30$ brass is extruded at a temperature of $675^{\circ} \mathrm{C}$. The billet diameter is 125 mm and the diameter of the extrusion is 50 mm . Calculate the extrusion force required if extrusion constant, k , is 250 MPa.
2. Assume that a round slug of 10 mm in diameter and made of a metal with $\mathrm{Yavg}^{2}=350 \mathrm{MPa}$ is reduced to a final diameter of 7 mm by cold extrusion. Find the force F.

Individual Assignment 4 Format

Please remember to include the questions given in the assignments. Cover page of the assignment should include:

1. Your Name \& No. Matric
2. Section
3. Lecturer's Name
. Submission date

Late submission also will be penalized.

