

Chapter 1:

Food Dehydration

Expected outcome:

- a) Able to apply the principles of dehydration in food
- b) Able to and analyze dehydration in food

Content

- Introduction
- Dehydration and quality
- Water and air psychrometry
- Drying equipment

Introduction

- Dehydration /drying removal of water from a product
- Purpose
 - Improve shelf life
 - Controlling water activity,
 - Inactivate microorganisms and enzymes
 - Minimize chemical reaction
 - Control texture properties
 - Standardize composition
 - Easy to handle

Dehydration and quality

- Changes food products in several ways
 - High temperatures can cause chemical reactions
 - Affects physical appearance
 - → Rehydration after drying may not restore original product.

Photo credit: <u>Gveret Tered</u>; <u>Wikimedia</u>; <u>Attribution-Share Alike 3.0 Unported</u>

Dehydration and quality

- Water activity (a_w)
 - Partial pressure of water vapour (p_w) above the food surface divided the pure component vapor pressure of water (p'_w) at the same temperature (Smith, 2003). $a_w = \frac{p_w}{p_w}$

• A measure of availability of water activity in range of 0 to 1

Other methods to control water activity by adding humectants.

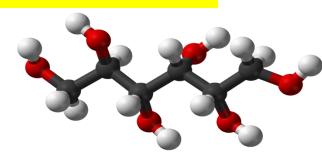
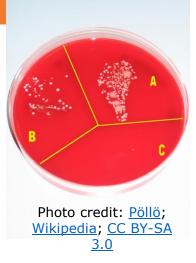



Photo credit Esquilo; Wikipedia;

Dehydration and quality

- Microbial stability
 - Limits of microbial growth determined by a_w
 - Less favorable the factors, the higher a_w required for growth
- Chemical stability
 - Enzymic reactions low in low a_w
- Physical stability
 - Softening/hardening of texture texture softens at high moisture, hardens at low moisture

A_w at high moisture content

- Ideal solution, Raoult's law; A_w=x_w
- Non ideal solution; $A_w = \gamma x_w$

$$x_{w} = \frac{\frac{x'_{w}}{M_{w}}}{\frac{x'_{w}}{M_{w}} + \frac{x'_{s}}{M_{s}}}$$

$$A_{w} = x_{w} \in e^{-k(1-x_{w})^{2}}$$

In multi component system with 2 solutes;

$$A_{\scriptscriptstyle W} = (A_{\scriptscriptstyle W1})(A_{\scriptscriptstyle W2})$$

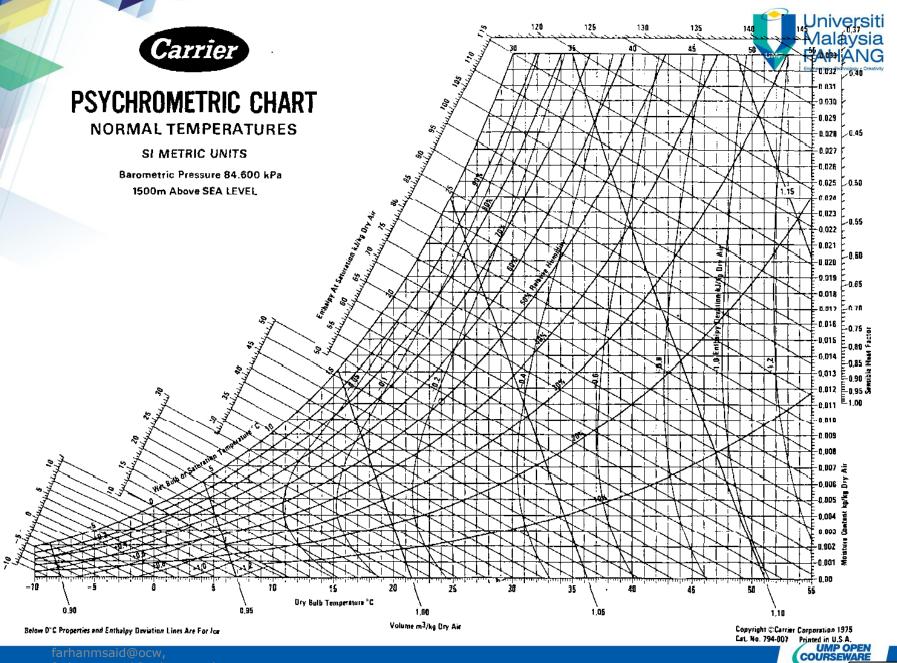
Example

- i. Determine the water activity of a 70% sucrose solution
- ii. Determine the water activity of fruit jams containing 70% soluble solids, 5% insoluble solids, and water. The soluble solids are 50% glucose and 50% sucrose.

Values of the Constant k for Various Solutes in Norrish's Equation for Water Activity of Solutions.

Sucrose	2,7
Glucose	0,7
Fructose	0.7
Invert sugars	0,7
Sorbitol	0.85
Glycerol	0.38
Propylene glycol	-0.12
Nacl	$15.8(x_2 < 0.02)$
	$7.9(x_2 > 0.02)$
Citric acid	6.17
d-Tartaric acid	4.68
Malic acid	1.82
Lactic acid	-1.59
Citric acid d-Tartaric acid Malic acid	$7.9(x_2 > 0.02)$ 6.17 4.68 1.82

Sources: Norrish, R. S., J. Food Technol. 1:25, 1996;



Water and air

- Movement of water vapor from food to surrounding air
 - the moisture content and composition of the food
 - the temperature and humidity of the air.
- At constant temperature the moisture content of food changes until it comes into equilibrium with water in the surrounding air. ==>EMC
 - This relative humidity of the storage atmosphere is called equilibrium RH (ERH).
- Capacity of air to remove moisture from a food depends on the temperature and the amount of water vapor on the air.
- Psychrometry study of the interrelationships of the temperature and humidity of air

Drying equipment

- Hot air driers
 - Tray drier
 - Solar dryer
 - Conveyer/belt drier
 - Spray drier
 - Rotary drier
- Heated-surface driers
 - Drum drier
 - Vacuum shelf drier

Example of dryer equipments

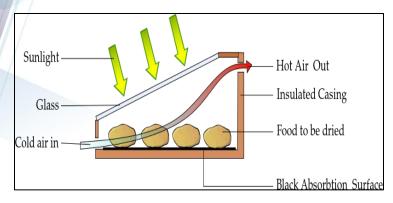


Photo credit: <u>A.K.Karthikeyan</u>; <u>Wikipedia</u>; <u>Attribution-Share Alike 3.0 Unported</u>

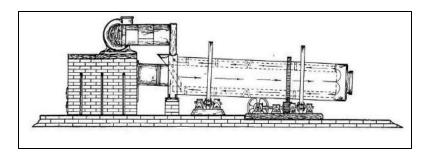


Photo credit: <u>Henry Kreitzer Benson;</u> Wikimedia; PD

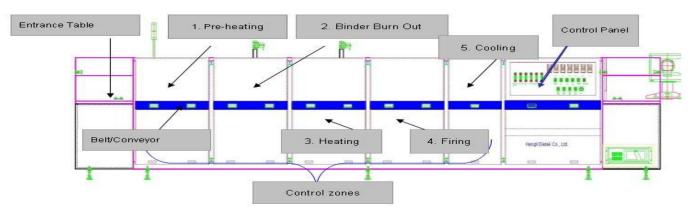


Photo credit: Furnacepro; Wikipedia; PD

Photo credit: PHARMABASIX; pharmabasics; PD

Photo credit: GALAXIE; galaxie; PD

