

BMA4723 VEHICLE DYNAMICS

Ch4 Vehicle Equation of Motions

by Mohamad Heerwan Bin Peeie Faculty of Mechanical Engineering mheerwan@ump.edu.my

Chapter Description

- Aims
 - Explain the effect of the lateral force to the yaw moment and side-slip angle of the vehicle.
 - Analyse the effect of the steering angle to the vehicle motion.
- Expected Outcomes
 - Students are able to determine the effect of the lateral force to the yaw moment and side-slip angle of the vehicle.
 - Students are able to evaluate the effect of the steering angle to the vehicle motion.
- References
 - M.Abe, Vehicle Handling Dynamics Theory and Application, Second Edition, Published by Elsevier Ltd, 2015
 - Thomas D.Gillespie, Fundamental of Vehicle Dynamics, Published by Society of Automotive Engineers

Outlines

- 4.3 Effect of the Lateral Force to the Yaw Moment of the Vehicle
- 4.4 Effect of the Lateral Force to the Side-slip Angle of the Tire

4.3 Effect of the Lateral Force to the Yaw Moment of the Vehicle

- Fig.1 shows the lateral forces acting on the tires.
- Due to the lateral forces, the yaw moment is generated at the center of the vehicle.

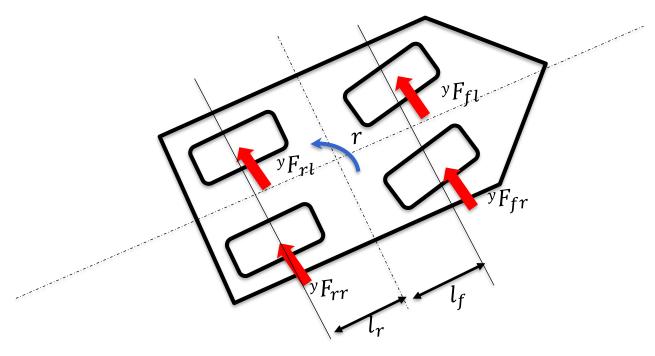


Figure 1 Lateral forces acting on the tires

4.3 Effect of the Lateral Force to the Yaw Moment of the Vehicle

 Based on Fig.1, from the Newton's Second Law, the rotational motion of the vehicle can be expressed as:

$$I\frac{dr}{dt} = l_f \left({}^{y}F_{fr} + {}^{y}F_{fr} \right) - l_r \left({}^{y}F_{rr} + {}^{y}F_{rl} \right)$$
(Eq.1)

where,

I: inertia of the vehicle

r: yaw moment at the center of the vehicle

 l_f : length from the front axle to the center of the vehicle

- l_r : length from the rear axle to the center of the vehicle
- ${}^{y}F$: lateral force at the front and rear tires

- Lateral forces also generated the side-slip angle at each tire, β_{fr} , β_{fl} , β_{rr} and β_{rl} .
- AS described in Chapter 2, the side-slip angle of the tire is the angle between tire heading direction and the tire travelling direction.

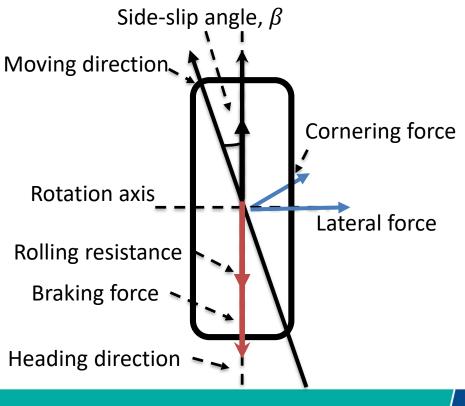
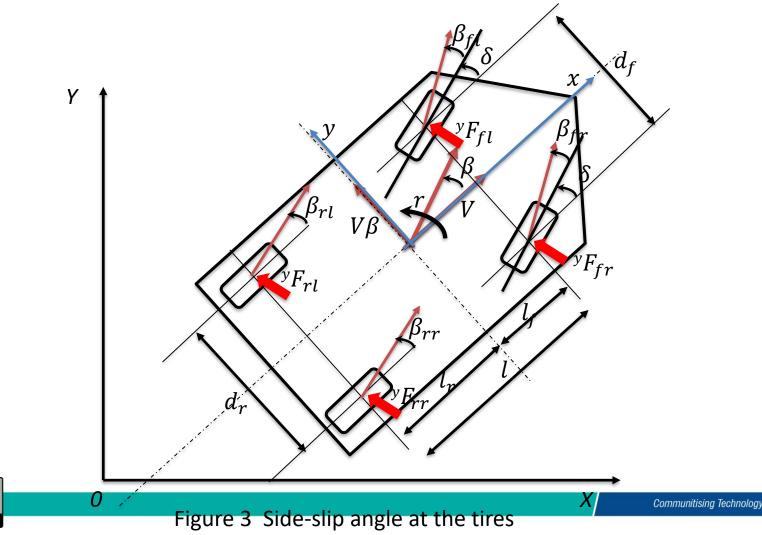
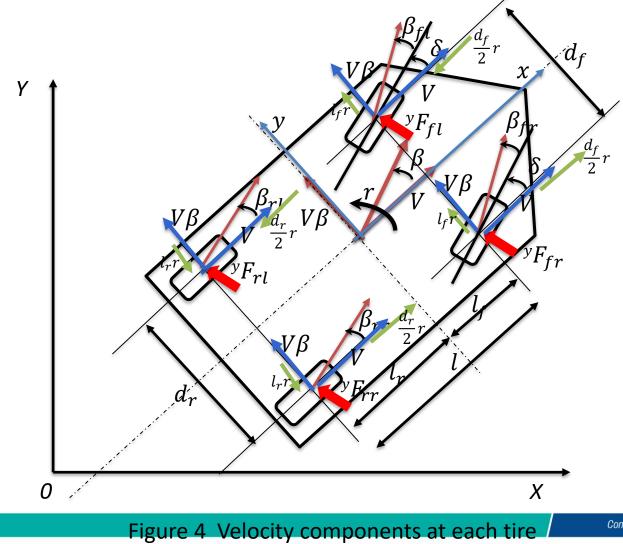



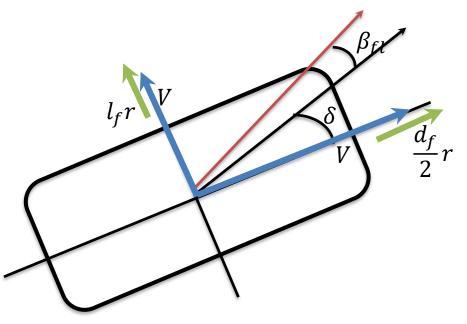
Figure 2 Side-slip angle at the tire


The side-slip angle due to the lateral forces at each tire are illustrated in Fig.3

- Based on Fig.3, the vehicle has the velocity component at the longitudinal axis, *x* axis and lateral axis, *y* axis.
- The velocity component at x axis is V and the velocity component at y axis is $V\beta$.
- The yaw angular velocity at the center of gravity is r.
- During traction or braking, the motion of the tires also influenced by the velocity component of the vehicle (V and $V\beta$) and yaw angular velocity of the vehicle (r).
- Fig. 4 shows the velocity component at each tire.

()

SA


NC

- From Fig.4, the actual steer angle of the front tire with respect to the longitudinal axis, x of the vehicle is δ .
- This actual steer angle, δ is the heading direction of the tire.
- Then, due to the lateral forces and yaw moment of the vehicle, the front tires will have the side-slip angle.
- For the rear tires, the steering angle is 0 because no steering connection to the rear tires.
- Then, the heading direction of the tires is same as the longitudinal direction (x axis) of the vehicle.
- Same as front tires, the rear tires also will have side-slip angle due to the lateral forces and yaw moment of the vehicle.

- Based on Fig.4, the velocity component at each tire consists of velocity components of the vehicle (V and $V\beta$), and yaw moment velocity of the vehicle (r).
- Fig.5 shows the velocity components at front left tires.

From the velocity components at the tires, the side-slip angle of each tire can be expressed as:

$$\beta_{fl} = \frac{V\beta + l_f r}{V - d_f r/2} - \delta \tag{Eq.2}$$

$$\beta_{fr} = \frac{V\beta + l_f r}{V + d_f r/2} - \delta \tag{Eq.3}$$

$$\beta_{rl} = \frac{V\beta - l_f r}{V - d_r r/2} \tag{Eq.4}$$

$$\beta_{rr} = \frac{V\beta - l_f r}{V + d_r r/2} \tag{Eq.5}$$

where d_f and d_r are the vehicle front and rear treads.

From Eq.2 to Eq.4, $|l_f r/v|$, $|l_r r/v|$, $|d_f r/2v|$, $|d_r r/2v| \ll 1$ can be ignored as negligible.

Then, the side-slip angle of the vehicle could be written as:

$$\beta_{fl} = \frac{V\beta + l_f r}{V - d_f r/2} - \delta \approx \beta + \frac{l_f}{V} r - \delta$$
(Eq.6)

$$\beta_{fr} = \frac{V\beta + l_f r}{V + d_f r/2} - \delta \approx \beta + \frac{l_f}{V} r - \delta$$
(Eq.7)

$$\beta_{rl} = \frac{V\beta - l_f r}{V - d_r r/2} \approx \beta - \frac{l_r}{V} r$$
(Eq.8)

$$\beta_{rr} = \frac{V\beta - l_f r}{V + d_r r/2} \approx \beta - \frac{l_r}{V}$$
(Eq.9)

From Eq.2 to Eq.4, $|l_f r/v|$, $|l_r r/v|$, $|d_f r/2v|$, $|d_r r/2v| \ll 1$ can be ignored as negligible.

Then, the side-slip angle of the vehicle could be written as:

$$\beta_{fl} = \frac{V\beta + l_f r}{V - d_f r/2} - \delta \approx \beta + \frac{l_f}{V} r - \delta$$
(Eq.6)

$$\beta_{fr} = \frac{V\beta + l_f r}{V + d_f r/2} - \delta \approx \beta + \frac{l_f}{V} r - \delta$$
(Eq.7)

$$\beta_{rl} = \frac{V\beta - l_f r}{V - d_r r/2} \approx \beta - \frac{l_r}{V} r$$
(Eq.8)

$$\beta_{rr} = \frac{V\beta - l_f r}{V + d_r r/2} \approx \beta - \frac{l_r}{V}$$
(Eq.9)

• By using Eq.6 and Eq.7, the side-slip angle of the front left tire is same as the front right tire.

$$\beta_{fl} = \beta_{fr} = \beta + \frac{l_f}{v}r - \delta \tag{Eq.10}$$

• Similar for the rear tires, the side-slip angle of the rear left tire is same as the rear right tire.

$$\beta_{rl} = \beta_{rr} = \beta - \frac{l_r}{V} \tag{Eq.11}$$

As the side-slip angle of the left and right tire is same, the four-wheeled vehicle model could be transformed to the two-wheeled vehicle model, also known as bicycle model.

• Fig.6 shows the two-wheeled vehicle model.

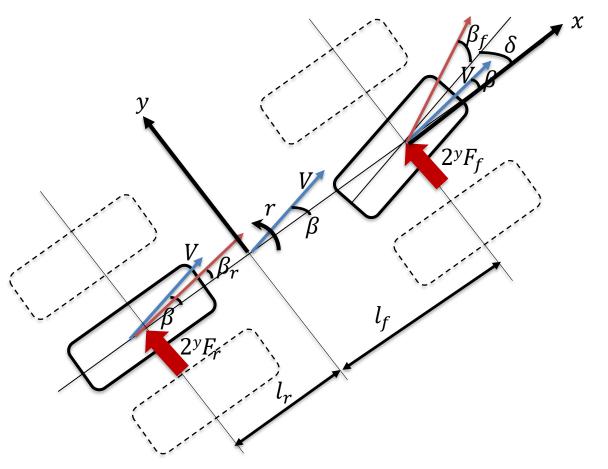


Figure 6 Bicycle model

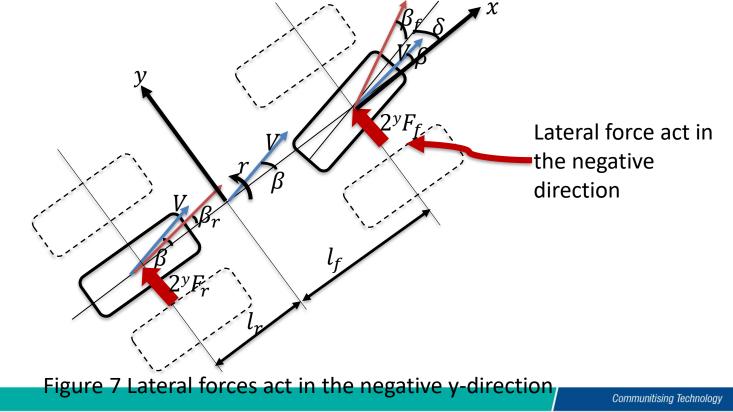
• From Fig.6, the lateral force at the front and rear tires are:

$$2^{y}F_{f} = {}^{y}F_{fl} + {}^{y}F_{fr}$$
(Eq.12)
$$2^{y}F_{r} = {}^{y}F_{rl} + {}^{y}F_{rr}$$
(Eq.13)

Then, by using the acceleration equation in Chapter 4.1 as below:

$$\ddot{R} = -V\beta(\dot{\beta} + r)i + V(\dot{\beta} + r)j$$

The equation of motion at the lateral axis could be written as:


$$mV\left(\frac{d\beta}{dt}+r\right) = 2^{y}F_{f} + 2^{y}F_{r}$$
 (Eq.14)

And yaw moment of the vehicle is:

$$I\frac{dr}{dt} = 2l_f {}^y F_f - 2l_r {}^y F_r \tag{Eq.15}$$

- The lateral forces at the front and rear tires $(2^{\gamma}F_f \text{ and } 2^{\gamma}F_r)$ are proportional to the product of the side-slip angle (β_f and β_r) and cornering stiffness of the tires (K_f and K_r).
- From Fig.7, all angles are positive in the anticlockwise direction.
- That figure shows that if the side-slip angle β is positive, the lateral forces $(2^{y}F_{f} \text{ and } 2^{y}F_{r})$, act in the negative y-direction.

• Then, the equation of the lateral forces are:

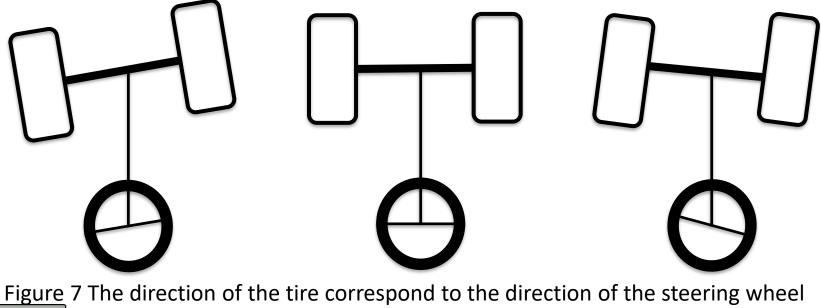
$${}^{y}F_{f} = -K_{f}\beta_{f} = -K_{f}(\beta + \frac{l_{f}}{v}r - \delta)$$
(Eq.16)

$${}^{y}F_{r} = -K_{r}\beta_{r} = -K_{r}(\beta - \frac{l_{r}}{V})$$
(Eq.17)

Substitute Eq.16 and Eq.17 into Eq.14 and Eq.15 gives:

$$mV\left(\frac{d\beta}{dt}+r\right) = 2^{y}F_{f} + 2^{y}F_{r}$$

$$mV\left(\frac{d\beta}{dt}+r\right) = -2K_{f}\left(\beta + \frac{l_{f}}{v}r - \delta\right) - 2K_{r}\left(\beta - \frac{l_{r}}{v}\right) \qquad (Eq.18)$$


$$I\frac{dr}{dt} = 2l_{f}^{y}F_{f} - 2l_{r}^{y}F_{r}$$

$$I\frac{dr}{dt} = -2l_{f}K_{f}\left(\beta + \frac{l_{f}}{v}r - \delta\right) + 2l_{r}K_{r}\left(\beta - \frac{l_{r}}{v}\right) \qquad (Eq.19)$$

ology

- From Eq.18 and Eq.19, the steer angle is δ .
- During driving, the input of the steer angle is come from the driver.
- The direction of the tire will follow the direction of the steering wheel.
- If the driver turn the steering wheel to the left side, the direction of the tire will change to the left side.
- On the other hand, if the driver turn the steering wheel to the right side, the tire will move to the right side.
- Fig.7 shows the direction of the steering wheel and the direction of the tire.

- Considered that the steering angle δ as an input, rearranging Eq.18 and Eq.19 gives:

$$mV\left(\frac{d\beta}{dt}\right) + 2\left(K_f + K_r\right)\beta + \left\{mV + \frac{2}{V}\left(l_fK_f - l_rK_r\right)\right\}r = 2K_f\delta$$
(Eq.20)

$$I\frac{dr}{dt} + 2(l_fK_f - l_rK_r)\beta + \frac{2(l_f^2K_f + l_r^2K_r)}{V}r = 2l_fK_f\delta$$

(Eq.21)

The left-hand side of Eq.20 and Eq.21 shows the response of the vehicle (sideslip angle β and yaw moment r) to the input, which is steering angle δ .

Conclusion of The Chapter 4

- Conclusion #1
 - The yaw moment and side-slip angle are generated due to the lateral forces.
- Conclusion #2
 - The steering angle can effect the direction and motion of the vehicle.

Vehicle Dynamics

Chapter 4

Dr Mohamad Heerwan Bin Peeie

Communitising Technology