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rational approach to scale-up has
been used in the physical sciences
for quite some time. This ap-

proach, called dimensional analysis, is
a proven method of developing func-
tional relationships that describe any
given process in a dimensionless form
to facilitate modeling and scale-up or
scale-down. This short article reviews
and demonstrates the dimensional
analysis method as applied to pharma-
ceutical processes and includes refer-
ences to works that have become clas-
sics in the field of granulation scale-up.

What is dimensional analysis?
Dimensional analysis is a method for
producing dimensionless numbers
and deriving functional relationships
among them that completely charac-
terize the process. The analysis can be
applied even when the equations gov-
erning the process are not known.

Imagine a dimensionless space in
which you have no mass, no length,
and no time. It is obvious that in such
a space, there are no scale-up prob-
lems because there is no scale.

Dimensional analytical procedure
was first systematically applied to fluid
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flow 90 years ago by Lord Rayleigh (1),
on the basis of the principle of simil-
itude referred to by Newton in one of
his early works.

Dimensionless numbers
Physical quantities such as force or
speed have the basic dimensional qual-
ities of length (L), mass (M), time (T),
and so forth. For example, speed has
dimensions of L/T, and force has a di-
mensional composition of ML/T 2.

Unlike the regular physical quan-
tities, dimensionless numbers have
no dimensions. Such numbers are
frequently used to describe the ra-
tios of various physical quantities.
Most relevant to the forthcoming
discussion are Newton (Ne, power),
Froude (Fr), and Reynolds (Re)
numbers, which, respectively, are ex-
pressed as 

Ne 5 P/(rn3d5)
Fr 5 n2d/g

Re 5 d2nr/h

in which P is the power consumption
(ML2/T3), r is the specific density of
particles (M/L3), n is the impeller speed
(T21), d is the impeller diameter (L), g
is the gravitational constant (L/T 2),
and h is the dynamic viscosity (M/LT).

The Newton (power) number,
which relates the drag force acting on
a unit area of the impeller and the in-
ertial stress, is a measure of the power
required to overcome friction in fluid
flow in a stirred reactor. In mixer-
granulation applications, this number
can be calculated from the power con-
sumption of the impeller.

The Froude number, first introduced
to quantify the resistance of ships (2),

has been described for powder blend-
ing (3) and was suggested as a criterion
for dynamic similarity as well as a scale-
up parameter in wet granulation (4).
The mechanics of the phenomenon
was described as an interplay of the
centrifugal force (pushing the particles
against the mixer wall) and the cen-
tripetal force produced by the wall,
thereby creating a “compaction zone.”

The Reynolds number, which re-
lates the inertial force to the viscous
force, is frequently used to describe
mixing processes (5), especially in
chemical engineering, for example, for
problems of water–air mixing in ves-
sels equipped with turbine stirrers
where scale-up can range from 2.5 to
906 L, which is a scale-up factor of
1:71 (see, for example, Reference 6).

Theory of models
Scale-up, then, is simple: Express the
process using a complete set of dimen-
sionless numbers and try to match
them at various scales. This dimen-
sionless space in which the measure-
ments are presented or measured will
make the process scale invariant.

According to the modeling theory,
two processes are considered similar
if there is a geometrical, kinematic,
and dynamic similarity (7). Two sys-
tems are called geometrically similar if
they have the same ratio of character-
istic linear dimensions. For example,
two cylindrical mixing vessels are geo-
metrically similar if they have the same
ration of height to diameter. Two geo-
metrically similar systems are called
kinematically similar if they have the
same ratio of velocities between cor-
responding points. Two kinematically
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similar systems are dynamically simi-
lar when they have the same ratio of
forces between corresponding points.
For any two dynamically similar sys-
tems, all the dimensionless numbers
necessary to describe the process have
the same numerical value (8).

Lack of geometrical similarity is
often the main obstacle when apply-
ing dimensional analysis to solve scale-
up problems. It has been shown, for
example, that Collette Gral 10, 75, and
300 are not geometrically similar (4).
In such cases, a proper correction to
the resulting equations is required.

Buckingham’s P theorem 
The fundamental theorem of the di-
mensional analysis, the P theorem,
states: Every physical relationship be-
tween n dimensional variables and con-
stants can be reduced to a relationship
between m = n 2 r mutually independ-
ent dimensionless groups, in which r is
the number of dimensions; that is, fun-
damental dimensional units (rank of
the dimensional matrix). The theorem
is universally ascribed to Buckingham,
who introduced the term and popular-
ized it in the United States (9), although
it was proven earlier by others.

It starts with a relevance list
Dimensional analysis starts with a rel-
evance list, which is a list of all vari-
ables thought to be crucial for the
process being analyzed. To set up a rel-
evance list for a process, one needs to
compile a complete set of all dimen-
sional relevant and mutually inde-
pendent variables and constants that
affect the process. The word complete
is crucial. All entries in the list can be

further subdivided as geometric, phys-
ical, or operational. Each relevance list
should include only one target (i.e.,
dependent “response”) variable.

Pitfalls of dimensional analysis often
relate to selecting the reference list, tar-
get variable, or measurement errors
(e.g., friction losses of the same order
of magnitude as the power consump-
tion of a motor). The larger the scale-
up factor, the more precise the meas-
urements of the small scale must be (8).

Dimensional matrix
Dimensional analysis can be simpli-
fied by arranging all relevant variables
from the relevance list into a matrix,
with a subsequent transformation
yielding the required dimensionless
numbers. The dimensional matrix
consists of a square core matrix and a
residual matrix. The rows of the ma-
trix consist of the basic dimensions,
whereas the columns represent the
physical quantities from the relevance
list. The most important physical
properties and process-related param-
eters, as well as the target variable (i.e.,
the one we would like to predict on
the basis of other variables) are placed
in one of the columns of the residual
matrix.

The core matrix is linearly trans-
formed into a matrix of unity in which
the main diagonal consists only of
ones and the remaining elements are
all zero. The dimensionless numbers
are then created as a ratio of columns
in the residual matrix and the core
matrix, with the exponents indicated
in the residual matrix. The following
examples illustrate this rather simple
process.
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Case study I
Hans Leuenberger
et al. proposed a
theory of granula-
tion end point de-
termination and
scale up using di-
mensional analysis,
starting with the
relevance list in
Table I (7, 10, 11).
The list reflects cer-
tain assumptions
that are used to simplify the model;
namely, that there are short range in-
teractions only and no viscosity factor
(and therefore, no Reynolds number).

Why is the gravitational constant
included? Well, imagine the same
process to be done on the moon.
Would you expect any difference?

One target variable (power con-
sumption) and seven process variables
or constants thus represent the num-
ber n 5 8 of the P theorem, and there
are three basic dimensions (r); namely,
M, L, and T. According to the theo-
rem, the process can be reduced to a
relationship between m 5 n 2 r 5 8
2 3 5 5 mutually independent di-
mensionless groups.

To find these groups, or numbers,
form the dimensional matrix shown in
Figure 1. One transformation changes
the 23 in the L-row, r-column to 0.
Subsequent multiplication of the T-
row by 21 transfers the 21 of the n-
column to 11 (see Figure 2). Five di-
mensionless groups are formed from
the five columns of the residual matrix
by dividing each element of the resid-
ual matrix by the column headers of
the unity matrix, with the exponents

shown in the residual matrix.
The residual matrix contains five

columns, therefore five dimensionless
P groups (numbers) are formed (see
Table II).

The end result of the dimensional
analysis is an expression of the form

P0 = f (P1, P2, P3, P4)

Assuming that the groups P2, P3,
and P4 are “essentially” constant, the
P-space can be reduced to a simple re-
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Table I: Variables used in dimensional analysis.
Quantity Symbol Units Dimensions

Power consumption P Watt ML2/T 3

Specific density r kg/m3 M/L3

Blade diameter d m L

Blade speed n rev/s T21

Binder amount m kg M

Bowl volume Vb m3 L3

Gravitational constant g m/s2 L/T 2

Bowl height h m L

Core matrix Residual matrix

r d n P m Vb g h

1 0 0 1 1 0 0 0

–3 1 0 2 0 3 1 1

0 0 –1 –3 0 0 –2 0

Mass M

Length L

Time T

Figure 1: Initial dimensional matrix for
case study I.

Unity matrix Residual matrix

r d n P m Vb g h

1 0 0 1 1 0 0 0

0 1 0 5 3 3 1 1

0 0 1 3 0 0 2 0

M

3M 1 L

2T

Figure 2: Initial dimensional matrix after
one linear transformation.
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lationship P0 = f(P1); that is, the value
of Newton number Ne at any point in
the process is a function of the specific
amount of granulating liquid.

Up to this point, all considerations
were rather theoretical. From the the-
ory of modeling, we know that the
above dimensional groups are func-
tionally related. The form of this func-
tional relationship f, however, can be
established only through experiments.

Leuenberger and his
group empirically estab-
lished that the amount
of binder required to
reach a desired end-
point (as expressed by
the absolute value of
Ne) is essentially pro-
portional to the batch
size (see Figure 3), thus
specifying the functional
dependence f and estab-
lishing a rational basis
for granulation scale-up.

According to Leuen-
berger, the correct
amount of granulating
liquid per batch is a
scale-up invariable, pro-

vided that the binder is mixed in as a
dry powder and then water is added
at a constant rate. This functionality
was shown for nonviscous binders.

The ratio of quantity of granulat-
ing liquid to batch size at the inflec-
tion point S3 of power versus time
curve is constant, irrespective of batch
size and type of machine. Moreover,
for a constant rate of low viscosity
binder addition proportional to the
batch size, the rate of change (slope or
time derivative) of the torque or power
consumption curve is linearly related
to the batch size for a wide spectrum of
high-shear and planetary mixers. In
other words, the process end point, as
determined in a certain region of the
curve, is a practically proven scale-up
parameter for moving the product from
laboratory to production mixers of var-
ious sizes and manufacturers.

Different vessel and blade geome-
tries will contribute to differences in

Batch size
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Figure 3: Binder amount versus batch
size. Adapted from Reference 11.

Table II: Dimensionless P groups for case study I.
P group Expression Definition

P0 P/(r1d 5n3) 5 Ne
Newton (power) 
number

P1
q /(r1d 3n0) 5
qt /(Vpr)

Specific amount 
of liquid Vp is 
volume of particles,
q is the binder
addition rate, and t
is the binder 
addition time

P2
t/(r0d3n0) 5
(Vp /Vb)

21
Fractional particle 
volume

P3 g/(r0d1n2) 5 Fr21 Froude number

P4 h/(r0d1n0) 5 h/d Ratio of lengths
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absolute values of the signals, but the
signal profile of a given granulate com-
position in a high-shear mixer is very
similar to one obtained in a planetary
mixer.

To calculate Ne, the power of the
load on the impeller rather than the
mixer motor should be used. Before
attempting to use dimensional analy-
sis, one must measure  or estimate
power losses for empty-bowl mixing.
This baseline, however, does not stay
constant; it changes significantly with
load, mixer condition, or motor effi-
ciency, which may present inherent
difficulties in using power meters in-
stead of torque. Torque, of course, is
directly proportional to the power
drawn by the impeller so that the
power number can be calculated from
the torque and speed measurements.

Case study II
Scale-up in fixed-bowl mixer granu-
lators has been studied using the clas-
sical dimensionless numbers of New-
ton (power), Reynolds, and Froude to
predict end-points in geometrically
similar, high-shear Fielder PMA 25-,
100-, and 600-L machines (12).

The relevance list included power
consumption of the impeller (as a re-
sponse) and six factor quantities: spe-
cific density, impeller diameter, im-
peller speed, gravitational constant,
vessel height (all with units and di-
mensions shown in Table I), and vis-
cosity of the wet mass (h, units of Pa-
s, dimensions M/LT). Dynamic
viscosity has replaced the binder
amount and bowl volume of Leuen-
berger’s relevance list, thus making it
applicable to viscous binders.

The dimensional matrix and the
matrix after the already familiar linear
transformation are shown in Figures
4 and 5, respectively. The residual ma-
trix contains four columns, therefore
four dimensionless P groups (num-
bers) are formed in accordance with
the P-theorem (see Table IV). Under
the assumed condition of dynamic
similarity, therefore, Ne = f(Re, Fr, h/d).

When corrections for gross vortex-
ing, geometric dissimilarities, and
powder-bed height variation are made,
data correlations from all mixers allow
predictions of optimum end-point
conditions. The linear regression of
the Newton number (power) on the
adjusted Reynolds number (in log/log
domain) yields Ne 5 7.96 3 102 (Re
Fr h/d)20.732 (see Figure 6).

The 0.7854 correlation coefficient
for the final curve-fitting effort, how-
ever, indicates the presence of many
unexplained outlier points. To main-

Core matrix Residual matrix

r d n P g h

1 0 0 1 1 0 0

–3 1 0 2 –1 1 1

0 0 –1 –3 –1 –2 0

Mass M

Length L

Time T

h

Figure 4: Dimensional matrix for case
study II.

Unity matrix Residual matrix

r d n P g h

1 0 0 1 1 0 0

0 1 0 5 2 1 1

0 0 1 3 1 2 0

M

3M + L

–T

h

Figure 5: Matrix for case study II after
linear transformation.
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tain the geometric similarity between
mixers, it is important to keep the
batch size in proportion to the over-
all shape of the mixer and especially
its bowl height. A special considera-
tion is required when using torque val-
ues from mixer torque rheometers for
the viscosity of wet granulation, be-
cause these values are proportional to
kinematic viscosity n 5 h/r rather
than dynamic viscosity h required to
calculate the Reynolds numbers.

Case study III
Fraure et al. applied this same approach
to a planetary Hobart AE240 mixer with
two interchangeable bowls (13). The
relevance list, assuming the absence of
chemical reaction and heat transfer, in-
cluded power consumption, specific
density, blade diameter, blade speed, dy-
namic viscosity, gravitational constant,
and wet powder bed height (h, units of

m, dimensions of L). As a meas-
ure of power consumption, net
impeller power consumption DP
(motor power consumption
minus the dry blending baseline
level was used. Dimensional
analysis and application of the
Buckingham theorem indicated
that Ne, Re, Fr, and h/d (propor-
tional to the fill ratio) adequately
described the process. A relation-

ship Ne 5 k[ReFr (h/d)]2r was postu-
lated and the constants k and r were
found empirically with a good correla-
tion (.0.92) between the observed and
predicted numbers.

Once the process similarity is estab-
lished or the appropriate corrections are
made, scale-up problems can be greatly
reduced or even completely eliminated,
because the same equation predicts the
power number of the granulation
process regardless of the batch size.
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