

Chemical Reaction Engineering I

Quiz 5

by Sureena Abdullah Mohd Sabri Mahmud

Faculty of Chemical and Natural Resources Engineering sureena@ump.edu.my

QUESTION 1

Chemical C can be synthesized via a gaseous reaction at 131°C as follows;

$$A + B \xrightarrow{k'} C + D$$

The reaction follows elementary rate law when using catalyst 1 and catalyst 2. The reaction kinetics and side reaction are a shown below:

Catalyst 1	Catalyst 2
k' ₁ =20 L ² kgcat ⁻¹ mol ⁻¹ min ⁻¹	k' ₁ =73 L ² kgat ⁻¹ mol ⁻¹ min ⁻¹
E ₁ = 42.3 kJmol ⁻¹	E ₁ = 23 kJmol ⁻¹
No side reaction	Elementary side reaction
	$2A \stackrel{k_2'}{\rightarrow} E$
	k' ₂ =150 L ² kgat ⁻¹ mol ⁻¹ min ⁻¹
	E ₂ = 23 kJmol ⁻¹

Estimate the residence time for a constant-volume reactor for each catalyst converting 90% of A at 150°C. Initial concentration of A and B are 1mol/L respectively. (catalyst 1; t=0.25min catalyst 2 = 0.09 min)

Authors Information

Credit to the authors: Assoc Prof Dr Maksudur Rahman Khan, Madam Hamidah Abdullah

