

Chemical Reaction Engineering I

Chapter 3 Stoichiometry Table

by
Sureena Abdullah
Mohd Sabri Mahmud
Faculty of Chemical and Natural Resources Engineering
sureena@ump.edu.my

Chapter Description

Aims

- To differentiate batch and flow system in terms of equation
- To convert design equation in concentration to conversion based design equation

Expected Outcomes

 Set up stoichiometric table for batch and flow system, for constant or variable density of material (liquid or gas)

References & other information

 Elements of Chemical Reaction Engineering', by H. Scott Fogler

Subtopics

3.1 Batch System

Flow System:
Liquid Phase Reaction

Flow System:
Gas Phase Reaction

Useful Definitions

Reaction:
$$A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$$

1. Parameter Θ

$$\Theta_i = \frac{N_{i0}}{N_{A0}} = \frac{C_{i0}}{C_{A0}} = \frac{y_{i0}}{y_{A0}}$$

2. Net mole change for the reaction

$$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$

3. Relationship between 'δ' and initial mole fraction of A

 $\varepsilon = \frac{\text{Change in total number of moles when complete conversion of A is attained}}{\text{Total number of moles of all species fed to the reactor}}$

$$\boxed{\varepsilon = \frac{N_{AO}}{N_{TO}} \delta = y_{A0} \cdot \delta} \qquad \boxed{\qquad} \boxed{\qquad} \boxed{\qquad} \boxed{\qquad} \boxed{N_T = \frac{N_{T0} + \delta \cdot X \cdot N_{A0}}{N_{T0}} = 1 + \varepsilon \cdot X}$$

Batch System

Reaction:
$$A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$$

Stoichiometric Table for a Batch System

Species	Symbol	Initial	Change	Remaining	Concen- trations
Α	Α	N _{AO}	-N _{AO} X	$N_A = N_{AO}(1-X)$	
В	В	$N_{BO} = N_{AO}\Theta_{B}$	-b/a N _{AO} X	$N_B = N_{AO}\Theta_B - b/a N_{AO}X$?
С	С	$N_{CO} = N_{AO}\Theta_{C}$	c/a N _{AO} X	$N_C = N_{AO}\Theta_C + c/a N_{AO}X$	
D	D	$N_{DO} = N_{AO}\Theta_{D}$	d/a N _{AO} X	$N_D = N_{AO}\Theta_D + d/a N_{AO}X$	
Inert	I	$N_{IO} = N_{AO}\Theta_{I}$	-	$N_I = N_{AO}\Theta_I$	
		N _{TO}		$N_T = N_{TO} + \delta N_{AO} X$	

Constant Volume Batch System

 With a condition that reaction occurred in liquid form or gas phase that occurred in rigid (e.g. steel) batch reactor, V=V_o

$$C_A = \frac{N_A}{V} = \frac{N_{AO}(1-X)}{V_O} = C_{AO}(1-X)$$

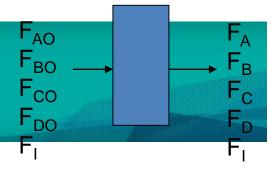
$$C_B = \frac{N_B}{V} = \frac{N_{AO}(\Theta_B - \frac{b}{a}X)}{V_O} = C_{AO}(\Theta_B - \frac{b}{a}X)$$

Stoichiometric Table for a Constant Volume Batch System

	Remaining	Concentrations
	$N_A = N_{AO}(1-X)$	$C_A = C_{AO}(1-X)$
	$N_B = N_{AO}\Theta_B$ -b/a $N_{AO}X$	$C_B = C_{AO}((\Theta_B - b/a^*X))$
	$N_{C}=N_{AO}\Theta_{C}+c/a N_{AO}X$	$C_C = C_{AO}(\Theta_C + c/a^*X)$
•••••	$N_D = N_{AO}\Theta_D + d/a N_{AO}X$	$C_D = C_{AO}(\Theta_D + d/a*X)$
•••••	$N_I = N_{AO}\Theta_I$	$C_I = C_{AO}\Theta_I$
	$N_T = N_{TO} + \delta N_{AO} X$	

Variable Volume Batch System

- Usually involve gas phase reaction, V ≠ V₀.
- The reactor volume may be related to initial reactor volume (V_0) and other operating parameters (P_0, T_0, P_0, T_0)


$$V = V_o \frac{N_T}{N_{TO}} \left(\frac{P_o}{P}\right) \frac{T}{T_o} \left(\frac{Z}{Z_o}\right)$$
$$= V_o (1 + \varepsilon X) \left(\frac{P_o}{P}\right) \frac{T}{T_o} \left(\frac{Z}{Z_o}\right)$$

For Ideal Gas

$$V = V_o \frac{N_T}{N_{TO}} (\frac{P_o}{P}) \frac{T}{T_o}$$
$$= V_o (1 + \varepsilon X) (\frac{P_o}{P}) \frac{T}{T_o}$$

Flow System

Consider reaction where A is a limiting reactant in a flow reactor with the reaction,

$$A + \frac{b}{a}B \to \frac{c}{a}C + \frac{d}{a}D$$

where
$$\Theta_i = \frac{F_{iO}}{F_{AO}} = \frac{y_{iO}}{y_{AO}}$$

Stoichiometric Table for a Flow System

Species	Initial	Change	Remaining	Concen- trations
Α	F _{AO}	-F _{AO} X	$F_A = F_{AO}(1-X)$	
В	$F_{BO} = F_{AO}\Theta_B$	-b/a F _{AO} X	$F_B = F_{AO}\Theta_B - b/aF_{AO}X$?
С	$F_{CO} = F_{AO}\Theta_{C}$	c/a F _{AO} X	F _C =F _{AO} Θ _C +c/a F _{AO} X	
D	$F_{DO} = F_{AO}\Theta_{D}$	d/a F _{AO} X	$F_D = F_{AO}\Theta_D + d/a F_{AO}X$	
Inert	Fı	-	F _I	
	F _{TO}		$F_T = F_{TO} + \delta F_{AO} X$	

Flow System: Liquid Phase Reaction

$$v = v_O$$

•
$$F_A = F_{AO}(1-X)$$

Since $F_A = C_A v$

$$C_A v = C_{AO} v_O (1-X)$$

$$C_A = C_{AO}(1-X)$$

• $F_B = F_{AO}\Theta_B - b/aF_{AO}X$ $C_B = C_{AO}(\Theta_B - b/a*X)$

Stoichiometric Table for a constant volumetric flow rate system

Change	Remaining	Concentrations	Similar
	$F_A = F_{AO}(1-X)$	$C_A = C_{AO}(1-X)$	with
	$F_B = F_{AO}\Theta_B - b/aF_{AO}X$	$C_B = C_{AO}(\Theta_B - b/a*X)$	batch
	F _C =F _{AO} ⊕ _C +c/a F _{AO} X	$C_C = C_{AO}(\Theta_C + c/a^*X)$	system
	$F_D = F_{AO}\Theta_D + d/a F_{AO}X$	$C_D = C_{AO}(\Theta_D + d/a^*X)$	
	F _I	C _I	_
	$F_T = F_{TO} + \delta F_{AO} X$		

Flow System: Gas Phase Reaction

In a gas phase flow system,

$$v = v_0 (1 + \varepsilon X) \frac{T}{T_0} \frac{P_0}{P}$$

Thus, $C_A = \frac{F_A}{V} = \frac{F_{AO}(1-X)}{V_O(1+\varepsilon X)} \frac{T_0}{T} \frac{P}{P_0} = C_{AO} \frac{(1-X)}{(1+\varepsilon X)} \frac{T_0}{T} \frac{P}{P_0}$ $C_B = \frac{F_B}{V} = \frac{F_{AO}(\Theta_B - \frac{b}{a}X)}{V_O(1 + \varepsilon X)} \frac{T_0}{T} \frac{P}{P} = C_{AO} \frac{(\Theta_B - \frac{b}{a}X)}{(1 + \varepsilon Y)} \frac{T_0}{T} \frac{P}{P}$

At constant temperature and pressure, if the rate of reaction was

$$-r_{A} = kC_{A}^{2}C_{B}^{1}$$

$$C_{A0} = \frac{P_{A0}}{RT}$$

$$r_{A} = \frac{kC_{A0}^{3}(1-X)^{2}(\Theta_{B} - \frac{b}{a}X)}{(1+\varepsilon X)^{3}}$$

$$\Theta_{B} = \frac{y_{B0}}{y_{A0}} = \frac{C_{B0}}{C_{A0}} = \frac{F_{B0}}{F_{A0}}$$

$$\Theta_{B} = \frac{Y_{B0}}{Y_{A0}} = \frac{F_{B0}}{Y_{A0}} = \frac{F_{B0$$

$$C_{A0} = \frac{P_{A0}}{RT}$$

$$\Theta_B = \frac{y_{B0}}{y_{A0}} = \frac{C_{B0}}{C_{A0}} = \frac{F_{B0}}{F_{A0}}$$

cc (1) (\$0) Stoichiometry Table by Sureena

Authors Information

Credit to the authors:
Dr Mohd Sabri Mahmud, Assoc Prof Dr
Maksudur Rahman Khan, Dr Hamidah
Abdullah

