

Chemical Reaction Engineering I

Self Test 2

by Sureena Abdullah Mohd Sabri Mahmud

Faculty of Chemical and Natural Resources Engineering Sureena@ump.edu.my

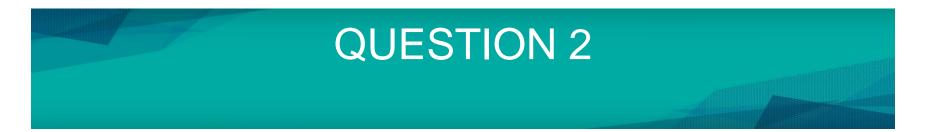
Self Test 2 by Sureena

QUESTION 1

(a) The following liquid phase reaction

 $A + B \rightarrow C + D$

has the reaction kinetics (initial concentration of A is 0.05 mol dm⁻³), shown in Table 2


C _A (mol dm ⁻³)	0.05	0.04	0.03	0.02	0.01
-r _A (mol dm ⁻³ s ⁻¹)	0.005	0.0042	0.003	0.0025	0.00125

The same reaction now will be conducted in a 1200 dm³ CSTR with its exit connected in-series to a PFR with volume of 600 dm³. The entering C_{A0} and C_{B0} to a CSTR are 0.05 mol dm⁻³ and 1 mol dm⁻³, respectively. In addition, the entering total volumetric flowrate is 100 dm³ s⁻¹. The exit conversion from the PFR is 80%.

- (i) Develop the Levenspiel Plot associated with the given data (refers to the table)
- (ii) Determine the intermediate conversions that can be achieved.

Self Test 2 by Sureena

Pure gas A enters the reactor at 830 kPa, having a volumetric flow rate, v_0 of 4 dm³/s at 450 K. Find the initial concentration of A, C_{A0} and the entering molar flow rate, F_{A0}. Assume A is an ideal gas.

Self Test 2 by Sureena

Authors Information

Credit to the authors: Assoc Prof Dr Maksudur Rahman Khan, Madam Hamidah Abdullah

Self Test 2 by Sureena

Communitising Technology