

Chemical Reaction Engineering I

Chapter 1 Mole Balance and Kinetics

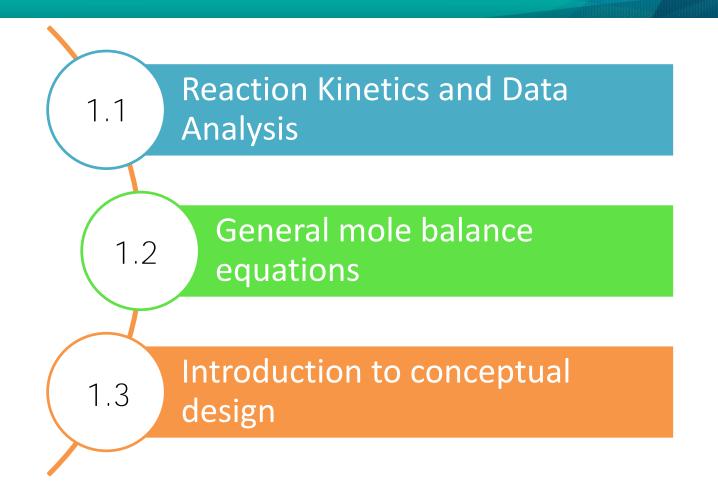
by Sureena Abdullah Faculty of Chemical and Natural Resources Engineering sureena@ump.edu.my

Chapter Description

Aims

- Formulate the rate of reactions for elementary reactions
- Define the Rate Law

Expected Outcomes


- Describe on the concepts of rate of reactions
- Explain about the chemical kinetics, emphasizing definitions and able to relate on how the reaction rate depends on the concentrations of the reacting chemicals.

References & other information

• Elements of Chemical Reaction Engineering', by H. Scott Fogler

Subtopics

Reaction Kinetics and Data Analysis

o Rate of reaction

- o $r_A \rightarrow$ the no. of moles reacting (A) per unit time per unit volume (mol/dm³. s)
- o $r_A' \rightarrow$ the no. of moles A per unit time per unit catalyst mass (mol/ s . g _{catalyst})
- o Unit : mol/dm³/s
- o Can be expressed in terms of (sign convention):
 - i. The rate of disappearance of a substance, -r_A
 - ii. The rate of formation of the substance, r_A

Reaction Kinetics and Data Analysis

- The reaction kinetics are formulated based on experimentally proven mechanism, not an arbitrary phenomenon
- Rate law is the simplest model, for instance:

 $A \rightarrow Products$

The rate of transformation of A can be:-

1. Linear function of concentration; or

$$-r_A = kC_A$$

- 2. Quadratic function of concentration; or $-r_A = kC_A^2$
- Other function of concentration, such as $-r_A = k_1 C_A / (1 + k_2 C_A)$ etc

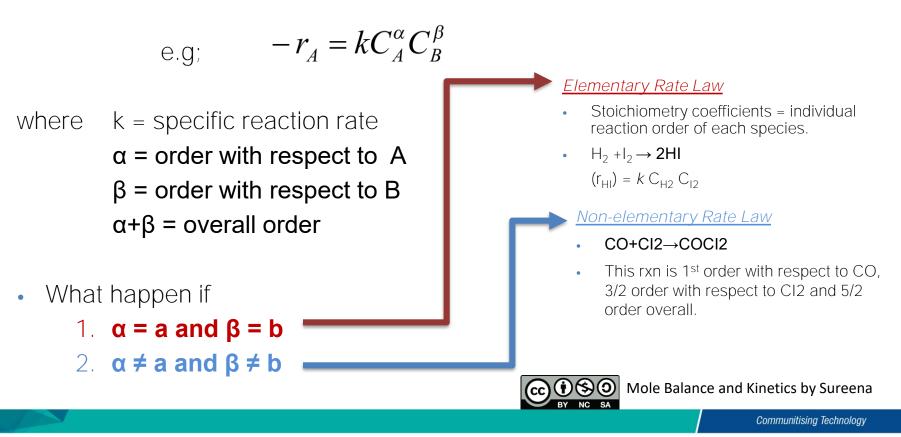
Relation of Rate in Reaction

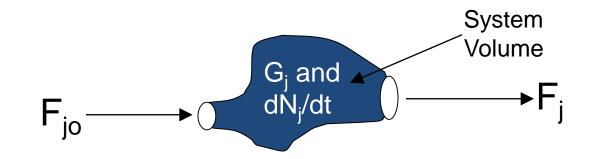
• For a reaction given below: $aA + bB \rightarrow cC + dD$

$$\frac{r_A}{-a} = \frac{r_B}{-b} = \frac{r_C}{c} = \frac{r_D}{d}$$

• Example:

 $2NO + O_2 \rightarrow 2NO_2$


$$\frac{r_{NO}}{-2} = \frac{r_{O_2}}{-1} = \frac{r_{NO_2}}{2}$$


Rate Law

- Consider the following reaction:
 - $aA + bB \rightarrow cC + dD$

The rate law may be written as : $-r_A = [k_A(T)][fn(C_A, C_B, ...)]$

General Moles balance Equation



$$\begin{bmatrix} \text{Rate of flow}\\ \text{into the system} \end{bmatrix} - \begin{bmatrix} \text{Rate of flow}\\ \text{out of the system} \end{bmatrix} + \begin{bmatrix} \text{Rate of generation}\\ \text{by chemical reaction}\\ \text{within the system} \end{bmatrix} = \begin{bmatrix} \text{Rate of}\\ \text{accumulation}\\ \text{within the system} \end{bmatrix}$$
$$F_{jo} - F_j + G_j = \frac{dN_j}{dt}$$

Design Equation for Batch Reactor

Batch

Design Equation for Continuous Reactors

CSTR
$$V = \frac{F_{A0} - F_{A}}{-(r_{A})}$$

PFR $\frac{dF_{A}}{dV} = r_{A}V = \int_{F_{A0}}^{F_{A}} \frac{dF_{A}}{(r_{A})}$
PBR $\frac{dF_{A}}{dW} = r_{A}^{'}W = \int_{F_{A0}}^{F_{A}} \frac{dF_{A}}{(r_{A})}$
Limiting reactant
 $X = \frac{F_{A0} - F_{A}}{F_{A0}}$
 $U = \frac{f_{A0}X}{-r_{A}}$
 $U = \frac{f_{A0}X}{-r_{A}}$
 $U = \int_{0}^{X} F_{A0} \frac{dX}{-r_{A}}$
 $\frac{dX}{dW} = -\frac{r_{A}'}{F_{A0}}$
 $W = \int_{0}^{X} F_{A0} \frac{dX}{-r_{A}'}$

Mole Balance for Reactive Unit

• GENERAL

$$F_{j0} - F_j + r_j V = \frac{dN_j}{dt}$$

• Stirred Tank Reactor (STR)
 $F_{A0} - F_A + r_A V = \frac{dN_A}{dt}$ Batch?
• Tubular Reactor

$$F_{A}|_{V} - F_{A}|_{V+\Delta V} + r_{A}\Delta V = \frac{dN_{A}}{dt} \xrightarrow{\text{Plug Flow?}} Plug \text{Flow?}$$
Packed-Bed?

Authors Information

Credit to the authors: Dr Mohd Sabri Mahmud, Assoc Prof Dr Maksudur Rahman Khan, Dr Hamidah Abdullah

