



#### 3.5 : GRADUALLY VARIED FLOW (GVF)

steady flow whose depth varies gradually along the length of the channel

#### **Conditions:**

Flow is steady;

hydraulic characteristics of flow remain constant for the time interval under consideration

Streamlines are practically parallel; that hydrostatic distribution of pressure prevails over the channel section

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Communitising Technology

#### Assumption:



- Head loss along the section is same;
  Chezy @ Manning formula may be used
- Slope of the channel is small;
  - depth of flow is the same whether the vertical or normal (to a channel bottom) direction is used
  - the channel is prismatic; has constant alignment and shape
  - roughness coefficient constant along the channel

Chapter 3 : Non - Uniform Flow in Open Channel by N Adilah A A Ghani







The continuity equation for steady flow in a rectangular channel is ybV = constant. Differentiating with respect to x gives;

$$0 = bV\frac{dy}{dx} + yb\frac{dV}{dx} \longrightarrow \frac{dV}{dx} = -\frac{V}{y}\frac{dy}{dx}$$

Eq: 3.5.5

Substituting Eq 5.1.4 into Eq 5.1.3 and noting that V /  $\sqrt{(gy)}$  is Froude number,

$$So - Sf = \frac{dy}{dx} - \frac{V^2}{gy} \frac{dy}{dx} = \frac{dy - Fr^2}{dx} \frac{dy}{dx}$$

Eq: 3.5.6

Solving for dy/dx gives the desired relation for the rate of change of flow depth (or the surface profile) in gradually varied flow in a open channel,

$$\frac{dy}{dx} = \frac{S_{\underline{o}} - S_{\underline{f}}}{1 - Fr^2}$$

Eq: 3.5.7

Chanter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Communitising Technology

#### 3.5.1 Classification of Open-Channel Flows





- Obstructions cause the flow depth to vary.
- Rapidly varied flow (RVF) occurs over a short distance near the obstacle.
- Gradually varied flow (GVF) occurs over larger distances and usually connects UF and RVF.

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

#### 3.5.2 Classification of Flow Profile



The flow profile represent the surface curve of the flow:

- a) backwater curve if the depth of flow increases in the direction of flow (dy/dx = + ve)
- b) drawdown curve if the depth of flow decreases in the direction of flow (dy/dx = -ve)

Chanter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Communitising Technology



### Classification of profiles according to dy/dl or (dh/dx)



Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani









## $\frac{dy}{dx} = \frac{S_o - S_f}{1 - \mathbf{F}_r^2}$

#### Zone 1 (M1 Profile)

Since  $y>y_n$  in Zone 1,  $S_f< S_o$ . Therefore, the numerator of Eq. 5-7 is positive. Similarly,  $\mathbf{F}_r<1$  since  $y>y_c$ . Therefore, the denominator of Eq. 5-7 is positive as well. Hence, it follows from Eq. 5-7 that

$$\frac{dy}{dx} = \frac{S_o - S_f}{1 - F_r^2} = \frac{+}{+} = +$$

This means that y increases with distance x. As discussed previously,  $y \to y_n$  asymptotically in the upstream direction and the water surface becomes almost horizontal as y becomes large in the downstream direction.

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghar



### $\frac{dy}{dx} = \frac{S_o - S_f}{1 - \mathbf{F}_r^2}$

#### Zone 2 (M2 Profile)

In this case,  $S_f > S_o$  since,  $y < y_n$ . Therefore, the numerator of Eq. 5-7 is negative. However, the denominator is positive, since  $\mathbf{F}_r < 1$  because  $y > y_c$ . Hence, it follows from Eq. 5-7 that

$$\frac{dy}{dx} = \frac{S_o - S_f}{1 - \mathbf{F}_r^2} = \frac{-}{+} = -$$

Thus, y decreases as x increases. As discussed previously,  $y\to y_n$  asymptotically; and  $y\to y_c$  almost vertically.

Chapter 3: Non - Uniform Flow in Open Chappel by N Adilah A A Ghani

Communitising Technology



$$\frac{dy}{dx} = \frac{S_o - R}{1 - \mathbf{F}}$$

#### Zone 3 (M3 Profile)

In Zone 3,  $S_f > S_o$  since  $y < y_n$ . Therefore, the numerator of Eq. 5-7 is negative. The denominator is negative as well, since  $F_r > 1$  because  $y < y_c$ . Hence, it follows from Eq. 5-7 that

$$\frac{dy}{dx} = \frac{S_o - S_f}{1 - F_r^2} = \frac{-}{-} = +$$

Thus, y increases as x increases.

Communitising Technolog

Chapter 3 : Non - Uniform Flow in Open Channel by N Adilah A A Ghar













## 3.5.3 Numerical Analysis of Water Surface Profile Values Surface Profile



There are several method to obtain surface water profile:

Prismatic channel

- a) Numerical Integration
- b) Direct Step Method

Non Prismatic channel

a) Standard Step Method

Those method can identified:

- a) Depth (y) at some distances/lengths (L/x)
- b) Distances/lengths from one point to one point when both depth are known

# a) Direct Step Method (Prismatic Channel) $h_L$ $V_1^2/2g$ $V_2^2/2g$ $y_1$ $\mathbf{y}_{2}$ $Z_1$ $\Delta x$



Equating the total head at the two end section 1 and 2, the following may be written;

$$y_{1} + v_{1}^{2}/2g + z_{1} = y_{2} + v_{2}^{2}/2g + z_{2} + h_{L}$$

$$E_{1} + (z_{1} - z_{2}) = E_{2} + h_{L}$$

$$E_{1} + S_{o} \Delta x = E_{2} + S_{f} \Delta x$$

$$\Delta x (S_{o} - S_{f}) = E_{2} - E_{1}$$

$$\Delta x = \frac{E_{2} - E_{1}}{(S_{o} - S_{f})}$$

Where:

E = specific energy at one point =  $y + v^2/2g$  $s_f$  = slope energy grade line =  $\frac{n^2v^2}{R^{4/3}}$  =  $\frac{v^2}{C^2R}$ 

Chapter 3 : Non - Uniform Flow in Open Chappel by N Adilah A A Ghani

Universiti Malaysia PAHANG

|   | l   |   |       | 4.4        | <u> </u>                       |                                                   |                   |                                    | I                   |    |
|---|-----|---|-------|------------|--------------------------------|---------------------------------------------------|-------------------|------------------------------------|---------------------|----|
|   |     |   |       | 1 + 4      |                                |                                                   |                   |                                    |                     |    |
|   | A/P |   |       | y+ (v²/2g) | E <sub>2</sub> -E <sub>1</sub> | (n <sup>2</sup> v <sup>2</sup> )/R <sup>4/3</sup> |                   |                                    | 6/9                 |    |
| 1 | 2   | 3 | 4     | 5          | 6                              | 7                                                 | 8                 | 9                                  | 10                  | 11 |
| у | R   | ٧ | v²/2g | E          | ΔΕ                             | S <sub>f</sub>                                    | S <sub>fbar</sub> | S <sub>o</sub> - S <sub>fbar</sub> | $\Delta \mathbf{x}$ | L  |
|   |     |   |       |            | -                              |                                                   | •                 | •                                  | -                   | -  |
|   |     |   |       |            |                                |                                                   |                   |                                    |                     |    |
|   |     |   |       |            |                                |                                                   |                   |                                    |                     |    |
|   |     |   |       |            |                                |                                                   |                   |                                    |                     |    |
|   |     |   |       |            |                                |                                                   |                   |                                    |                     |    |

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghar

13



| Column | Formula                                |                                                             |
|--------|----------------------------------------|-------------------------------------------------------------|
| 1      | Y                                      | water depth (m)                                             |
| 2      | R                                      | A/P = hydraulic radius or y for very wide rectangular       |
| 3      | ٧                                      | v = flow velocity                                           |
| 4      | v²/2g                                  | kinetic energy                                              |
| 5      | y + v²/2g                              | E = specific energy                                         |
| 6      | E <sub>2 -</sub> E <sub>1</sub>        | ΔE = energy loss                                            |
| 7      | S <sub>f</sub>                         | slope energy grade line                                     |
|        |                                        | $= \frac{n^2 V^2}{R^{4/3}} = \frac{V^2}{C^2 R}$             |
| 8      | (S <sub>f1</sub> + S <sub>f2</sub> )/2 | EGL slope average                                           |
| 9      | (S <sub>o</sub> - S <sub>f</sub> )     | slope different                                             |
| 10     | $\Delta \mathbf{x}$                    | reach = $\Delta E / (s_o - s_f)$                            |
| 11     | L                                      | length of surface water profile which is calculate from dam |

Chapter 3 : Non - Uniform Flow in Open Channel by N Adilah A A Ghar

Communitising Technology

#### **Example 3.13 (Using Direct Step Method)**



The very wide rectangular channel carry the water at  $2.5 \, \text{m}^3\text{/s/m}$  with channel bed slope, 0.001 and n=0.025.

Find the length of back water which is happened from one dam and obtained the 2 m water depth at the dam's back.

The calculation must from the dam to upstream until the water surface is 1% higher than normal depth.

Chapter 3 : Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Contaditation Carley Sedu.

Universit Malaysia PAHANG

Manning for the very wide rectangular channel:

$$q = y_0 \frac{5/3}{n} s_0^{1/2}$$

$$2.5 \qquad = \quad \underline{y_0}^{5/3} \, (0.001)^{1/2} \\ (0.025)$$

$$y_o^{5/3} = \frac{2.5 (0.025)}{(0.001)^{1/2}}$$

$$y_0^{5/3} = 1.98$$

 $y_0 = 1.50 \text{ m}$ 

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Universiti

Critical depth:

$$y_c = \left(\frac{q^2}{g}\right)^{1/3}$$

$$y_c = \frac{(2.5)^2}{(9.81)}^{1/3}$$

$$y_c = 0.86 \text{ m}$$

1% from  $y_o$  = 0.01 x 1.50 = 0.015 m  $\approx$  0.02 m

L from y = 2.0 m till y = (1.50+0.02) = 1.52 m

@090 Oberts A North Town The Standard December 14 A Charles

| q =<br>n = | 0.001<br>2.5<br>0.025 |      |       |           |                                |                                                 |                   |                                    |          |         |
|------------|-----------------------|------|-------|-----------|--------------------------------|-------------------------------------------------|-------------------|------------------------------------|----------|---------|
|            |                       |      |       | 1 + 4     |                                |                                                 |                   |                                    |          |         |
|            | A/P                   |      |       | (y+v²/2g) | E <sub>2</sub> -E <sub>1</sub> | n <sup>2</sup> v <sup>2</sup> /R <sup>4/3</sup> |                   |                                    | 6/9      |         |
| 1          | 2                     | 3    | 4     | 5         | 6                              | 7                                               | 8                 | 9                                  | 10       | 11      |
| у          | R                     | ٧    | v²/2g | E         | ΔΕ                             | S <sub>f</sub>                                  | S <sub>fbar</sub> | S <sub>o</sub> - S <sub>fbar</sub> | Δχ       | L       |
| 2.00       | 2.00                  | 1.25 | 0.08  | 2.08      | -                              | 0.00039                                         | -                 | -                                  | -        | -       |
| 1.88       | 1.88                  | 1.33 | 0.09  | 1.97      | -0.11                          | 0.00048                                         | 0.00043           | 0.00057                            | -192.776 | -192.7  |
| 1.76       | 1.76                  | 1.42 | 0.10  | 1.86      | -0.11                          | 0.00059                                         | 0.00053           | 0.00047                            | -230.676 | -423.4  |
| 1.64       | 1.64                  | 1.52 | 0.12  | 1.76      | -0.10                          | 0.00075                                         | 0.00067           | 0.00033                            | -318.489 | -741.9  |
| 1.52       | 1.52                  | 1.64 | 0.14  | 1.66      | -0.10                          | 0.00097                                         | 0.00086           | 0.00014                            | -714.146 | -1456.0 |





#### b) Standard Step Method (Non - Prismatic Channel)

Applicable to non-prismatic channels and therefore to natural river

#### **Objectives**

- To calculate the surface elevations at the station with predetermined the station positions
- A trial and error method is employed

Chapter 3 : Non Uniform Flow in Open Chappel by N Adilah A A Chapi



This can be rewritten in finite difference form

$$\Delta E_s = \Delta X (S_o - \bar{S_f})_{mean}$$

where 'mean' refers to the average values for the interval  $\Delta X$ .

This form of the equation may be used to determine the depth given distance intervals. The solution method is an iterative procedure as follows;

Chapter 3 : Non - Uniform Flow in Open Channel by N Adilah A A Ghani





#### H1 is known and $\Delta X$ predetermined.

- 1) Assume a value for depth ( $Z_2$ ); simple add a small amount to  $Z_1$
- 2) Calculate  $y_2$  from  $y_2 = Z_2 So\Delta X$
- 3) Calculate the corresponding specific energy (E<sub>2</sub>)
- 4) Calculate the corresponding friction slope S2
- 5) Calculate H<sub>2</sub>
- 6) Calculate  $H_1 = H_2 + S_f \Delta X$
- 7) Compare H2 and  $H_1$  if the differences is not within the prescribed limit (e.g., 0.001m) re-estimate  $Z_2$  and repeat the procedure until the agreement is reached.

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghan



