For updated version, please click on http://ocw.ump.edu.my

Finite Element Analysis

Heat Transfer Example

by Dr. Gul Ahmed Jokhio Faculty of Civil Engineering and Earth Resources

Lesson Outcomes

- At the end of this lesson, the student should be able to:
 - Understand the use of finite element heat transfer analysis
 - Evaluate the loss or gain of heat through a linear system

Heat Transfer Example

• Part of a cross-section of the wall of a water dispenser is shown on the next slide. The water in the dispenser has a temperature of 3oC and the outside air temperature is 35oC. The wall consists three layers; an inside lining, a layer of air and an outside insulation. The thermal conductivity of air can be assumed to be 0.5 W/moC. The inside lining has a thermal conductivity of 0.2 W/moC and the outside insulation has a thermal conductivity of 1.5 W/moC. The heat transfer coefficients for the inner, middle and outer layers are 5 W/m2-oC, 20 W/m2-oC, and 10 W/m2-oC, respectively. Evaluate the heat transferred through the wall of the water dispenser.

Heat Transfer Example (Continued)

Inside	Air	Outside
Lining	Layer	Insulation
2mm	10mm	5mm

Solution

Assuming it a one dimensional finite elment model with 3 elements each respresenting a wall layer of unit area, we have:

Element 1

$$k_{xx} = 0.2 \ W/m^{\circ}C$$

$$h = 5 \ W/m^{2} - {}^{\circ}C$$

$$[k]^{(1)} = \frac{Ak_{xx}}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + hA \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$[k]^{(1)} = \frac{0.2}{0.002} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + 5 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$[k]^{(1)} = \begin{bmatrix} 105 & -100 \\ -100 & 100 \end{bmatrix}$$

 $Element \ 2$

$$k_{xx} = 0.5 \ W/m^{\circ}C$$

$$h = 20 \ W/m^{2} - {}^{\circ}C$$

$$[k]^{(2)} = \frac{Ak_{xx}}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$[k]^{(2)} = \frac{0.5}{0.01} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$[k]^{(2)} = \begin{bmatrix} 50 & -50 \\ -50 & 50 \end{bmatrix}$$

Element 3

$$k_{xx} = 1.5 \ W/m^o C$$

$$h = 10 \ W/m^2 - {}^o C$$
$$[k]^{(3)} = \frac{Ak_{xx}}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + hA \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$[k]^{(3)} = \frac{1.5}{0.005} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + 10 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
$$[k]^{(3)} = \begin{bmatrix} 300 & -300 \\ -300 & 310 \end{bmatrix}$$

The force terms are:

Left End (node 1)

$$h_L = 5 W/m^2 - {}^o C$$

$$T_{\infty,L} = 3^{\circ}C$$

$$\{f_h\}_L = h_L T_{\infty,L} A = 5 \times 3 \times 1 = 15$$

Right End (node 4)

 $h_R = 10 \ W/m^2 - {}^o C$

 $T_{\infty,R} = 35^{\circ}C$

 $\{f_h\}_R = h_R T_{\infty,R} A = 10\times 35\times 1 = 350$

By direct assembly, we get:

ſ	105	-100	0	0	$\begin{bmatrix} t_1 \end{bmatrix}$	15
	-100	150	-50	0	t_2	0
	0	-50	350	-300	t_3	0
	0	0	-300	310	t_4	350

The augmented matrix is:

105	-100	0	0	÷	15
-100	150	-50	0	÷	0
0	-50	350	-300	÷	0
0	0	-300	310	÷	350

Multiply row 1 by 100/105 and add it to row 2

105	-100	0	0	÷	15
0	54.7619	-50	0	÷	14.2857
0	-50	350	-300	÷	0
0	0	-300	310	÷	350

Multiply row 2 by 50/54.7619 and add it to row 3

105	-100	0	0	÷	15
0	54.7619	-50	0	÷	14.2857
0	0	304.3478	-300	÷	13.0428
0	0	-300	310	÷	350

Multiply row 3 by 300/304.3478 and add it to row 4

105	-100	0	0	÷	15
0	54.7619	-50	0	÷	14.2857
0	0	304.3478	-300	÷	13.0428
0	0	0	14.2857	÷	362.8565

Therefore:

$$t_4 = \frac{362.8565}{14.2857} = 25.4^{\circ}C$$

$$t_3 = \frac{13.0428 + 300 \times 25.4}{304.3478} = 25.08^{\circ}C$$

$$t_2 = \frac{14.2857 + 50 \times 25.08}{54.7619} = 23.16^{\circ}C$$

$$t_1 = \frac{15 + 100 \times 23.16}{105} = 22.2^{\circ}C$$

The heat flow is given as:

$$q = -\frac{k_{xx}A}{L}(t_2 - t_1) = -\frac{0.2}{0.002}(23.16 - 22.2) = -104.167 W$$

104.167 W of heat is lost through the wall of the water dispenser.

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

