Finite Element Analysis

Grid Equations

by
Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources okhio@ump.edu.my

Lesson Outcomes

- At the end of this lesson, the student should be able to:
- Understand the development of grid equations
- Include torsional effects into equations for beamcolumns

Grid Structure

- A grid is a structure on which loads are applied perpendicular to the plane of the structure, as opposed to the plane frame, where loads are applied in the plane of the structure
- Typical grid structures are bridge decks, roofing frames, etc.

Torsional Effects

- Recall the basic beam element stiffness matrix
$\cdot[k]=\frac{E I}{L^{3}}\left[\begin{array}{cccc}12 & -6 L & -12 & -6 L \\ -6 L & 4 L^{2} & 6 L & 2 L^{2} \\ -12 & 6 L & 12 & 6 L \\ -6 L & 2 L^{2} & 6 L & 4 L^{2}\end{array}\right]$
- This matrix accounts for the shear and bending effects but does not account for torsion effects
- A typical grid element is subjected to torsion in addition to shear and bending

Torsional Effects (Continued)

- Assuming a linear relationship for the angle of twist:

$$
\hat{\phi}=a_{1}+a_{2} \hat{x}
$$

- Expressing the coefficients in terms of unknown nodal angles of twist:

$$
\hat{\phi}=\left(\frac{\hat{\phi}_{2 x}-\hat{\phi}_{1 x}}{L}\right) \hat{x}+\hat{\phi}_{1 x}
$$

- In matrix form:

$$
\hat{\phi}=\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right]\left\{\begin{array}{c}
\hat{\phi}_{1 x} \\
\hat{\phi}_{2 x}
\end{array}\right\}
$$

Torsional Effects (Continued)

- Shear stress/shear strain relationship is given as
- $\tau=G \gamma$
- Shear stress is related to applied torque by:
- $m=\frac{\tau J}{R}$
- Where, J is the polar moment of inertia, a.k.a. torsional constant
- After making substitutions, for both ends:
- $m_{1 x}=\frac{G J}{L}\left(\phi_{1 x}-\phi_{2 x}\right)$
- $m_{2 x}=\frac{G J}{L}\left(\phi_{2 x}-\phi_{1 x}\right)$

Torsional Effects (Continued)

- In matrix form:
- $\left\{\begin{array}{l}m_{1 x} \\ m_{2 x}\end{array}\right\}=\frac{G J}{L}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left\{\begin{array}{l}\phi_{1 x} \\ \phi_{2 x}\end{array}\right\}$
- So the stiffness matrix for a torsion bar is:
- $[k]=\frac{G J}{L}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
- It is apparent that this is similar to an axially loaded bar except $A E$ are replaced by $G J$
- We can combine these torsional effects with the stiffness matrix of the beam element accounting for shear and flexure to get the stiffness matrix for a grid element
- The stiffness matrix for the grid element will then account for shear, flexure, and torsion

Stiffness Matrix for a Grid Element: System of Equations accounting for Torsional Effects

$$
\left\{\begin{array}{l}
f_{1 y} \\
m_{1 x} \\
m_{1 z} \\
f_{2 y} \\
m_{2 x} \\
m_{2 z}
\end{array}\right\}=\left[\begin{array}{cccccc}
\frac{12 E I}{L^{3}} & 0 & \frac{6 E I}{L^{2}} & -\frac{12 E I}{L^{3}} & 0 & \frac{6 E I}{L^{2}} \\
0 & \frac{G J}{L} & 0 & 0 & -\frac{G J}{L} & 0 \\
\frac{6 E I}{L^{2}} & 0 & \frac{4 E I}{L} & -\frac{6 E I}{L^{2}} & 0 & \frac{2 E I}{L} \\
-\frac{12 E I}{L^{3}} & 0 & -\frac{6 E I}{L^{2}} & \frac{12 E I}{L^{3}} & 0 & -\frac{6 E I}{L^{2}} \\
0 & -\frac{G J}{L} & 0 & 0 & \frac{G J}{L} & 0 \\
\frac{6 E I}{L^{2}} & 0 & \frac{2 E I}{L} & -\frac{6 E I}{L^{2}} & 0 & \frac{4 E I}{L}
\end{array}\right]
$$

Arbitrarily Orientated Grid Element

- The stiffness matrix for an arbitrarily orientated grid element can be obtained by transforming the stiffness matrix obtained above from local coordinates system to the global
- The transformation matrix is:
- $[T]=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & C & S & 0 & 0 & 0 \\ 0 & -S & C & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & C & S \\ 0 & 0 & 0 & 0 & -S & C\end{array}\right]$
- Where, C and S retain their conventional meaning
- The global matrix is given as:
- $[k]=[T]^{T}\left[k^{\prime}\right][T]$

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

